IVC Series Small PLC Programming Manual

Version V1.0 Revision date Nov 26, 2011

Invt Auto-Control Technology provides customers with technical support. Users may contact the nearest Invt local sales office or service center.

Copyright © 2011 by Invt Auto-Control Technology Co., Ltd. All rights reserved. The contents in this document are subject to change without notice.

Invt Auto-Control Technology Co., Ltd. Address: 4# INVT Building, Gaofa Industrial Park, Longjing, Nanshan District, Shenzhen, China, 518055 Homepage: www.Invt.com.cn E-mail: ethan@Invt.com.cn

Prologue

Target reader

This book is suitable for the automation personnel who need to master the PLC programming, system design and commissioning. This book can also serve as a reference for anyone who are interested in futhering their PLC programming knowledge.

Content of this book

This book details the principles, hardware resources, programming languages and instructions of the IVC series small PLC. A variety of application illustrations are used to help you understand the rich functions of the PLC.

Features of this book

The chapters in this book develops from general to details, each having its independent topic. You can either read thoroughly to gain overall knowledge of the IVC series small PLC, or consult in some of the chapters for technical reference.

Reading instructions

1. For readers unfamiliar with PLC

It is recommended to start with chapters 1~4 to learn the basic PLC knowledge, including PLC function description, programming languages, elements & data, addressing modes, program annotating function, main program and subprograms. Afterwards, you can read other chapters to cater for your needs.

2. For readers familiar with PLC

You can jump directly to *Chapter 5 Basic Instructions* and *Chapter 6 Application* Instructions, which provide complete and detailed explanation for the instructions of Invt IVC series PLC. In addition, the *Appendix 9 Instruction Index* and *Appendix 10 Classified Instruction Index* provide tools for locating the instructions in the orders of alphabet and classification respectively.

Related documents

You can refer to the following books while reading this book:

- IVC1 Series PLC User Manual
- IVC2 Series PLC User Manual
- AutoStation Programming Software User Manual

Contents

Chapter 1 Product Overview	1
Chapter 2 PLC Function Description	8
Chapter 3 Element And Data	31
Chapter 4 Programming Concepts	44
Chapter 5 Basic Instructions	54
Chapter 6 Application Instructions	70
Chapter 7 SFC Tutor	
Chapter 8 Using High Speed I/O	
Chapter 9 Using Interrupts	235
Chapter 10 Using Communication Function	244
Appendix 1 Special Auxiliary Relay	
Appendix 2 Special Data Register	270
Appendix 3 Reserved Elements	276
Appendix 4 Modbus Communication Error Code	
Appendix 5 Inverter Instruction Error Code	278
Appendix 6 System Error Code	
Appendix 7 Modbus Communication Protocol (IVC Series)	
Appendix 8 ASCII Code Table	
Appendix 9 Instruction Index	
Appendix 10 Classified Instruction Index	

Chapter 1 Product Overview

This chapter presents the product makeup, plaftform of the programming software and network configuration of the	ne
IVC series small PLC.	
1.1 Product Introduction	2
1.1.1 Product Specification	2
1.1.2 Outline Of IVC1 Series Basic Module	4
1.1.3 Outline of IVC2 Series Basic Module	4
1.2 AutoStation Programming Software	4
1.2.1 Basic Configuration	4
1.2.2 AutoStation Installation	5
1.2.3 AutoStation Operation Interface	5
1.2.4 Programming Cable	5
1.3 Communication Function	6
1.3.1 Modbus Protocol Network	6
1.3.2 N:N bus Protocol Network	6
1.3.3 Free Port Protocol Network	6
1.4 Makeup Of Document System Of IVC Series Small PLCs	7
1.4.1 Model Selection Instruction	7
1.4.2 Basic Module User Manual	7
1.4.3 Programming Manual	7
1.4.4 Programming Software User Manual	7
1.4.5 I/O Extension Module User Manual	7
1.4.6 Special Module User Manual	7

1.1 Product Introduction

The IVC series small PLC, comprising the IVC1 mini-scale series and IVC2 small series, is a high performance product suitable for modern industrial control.

The IVC series PLC products have integrated structure, built-in high performance microprocessor, operation control system, integrated I/O and extension bus. The series also include I/O modules and special modules. The basic module has 2 integrated communication ports, and the sytem can connect to the profibus network through a profibus extension module. The basic module I/O is capable of high-speed counting and high-speed output that can be used for exact locating. The powerful AutoStation programming software provides 3 standard programming languages and commissioning & monitoring functions, and boasts complete user program protection mechanism.

1.1.1 Product Specification

			IVC2 IV		C1	
			10-input /6-output	14-input /10-output	10-input /6-output	14-input /10-output
	Digital I/O po	pints	20-input /12-output	24-input /16-output	16-input /14-output	24-input /16-output
			32-input /32-output	40-input /40-output	36-input /24-output	
	Total numbe	r of supported	512		128	
	I/O points		012			
	Max. numbe	r of special	8 4			
	modules					
	High speed	oulse output	2×100 kHz (for transistor output only)			
	Single phase channel	ecounting	6: 2(50kHz) + 4 (10kHz)			
	AB phase co	unting channel	2: 1 (30kHz) + 1 (5k	Hz)		
	Max. total fre	equency of	80kHz			
1/0	high-speed of	counter	OUNTIZ		OUKI IZ	
	Digital filtering		X0 ~ X17		X0 ~ X7	
			$(\text{Input filtering constant: } 0 \sim 60\text{ms})$		(Input filtering consta	ant: 0, 8, 16, 32,
					64ms)	
			2A/1 piont			
	Max. relay	Resistive load	8A/4-point-group common terminal			
	output		8A/8 point-group common terminal			
	current	Inductive load	220Vac, 80VA			
		Illumination	220Vac, 100W			
	Max.	Resistive load	Y0, Y1: 0.3A/1 point			
	transistor		Others: 0.3A/1 point, 0.8A/4 points, 1.6A/8 points.			
	output		For each point above 8-point, the total current raises 0.1A.			
	current	Inductive load	Y0, Y1: 7.2W/24Vdc	. Others: 12W/24Vdc		
		Illumination	Y0, Y1: 0.9W/24Vdc. Others: 1.5W/24Vdc			
User program		n	12k steps (24kByte)			
	Memory hold upon power		Yes			
	failure					
Registor	Max. number of memory		User set (up to 200	C elements)	320 bit elements, or	180 word elements
	hold elements				,	
	Hardware support and		Backup battery. Life	span: 1 year.	EEPROM. Permane	nt
	sustainable period					

Table	1-1	PLC basic	module
	• •		

		IVC2	IVC1		
		100ms precision: T0 ~ T209			
	Timer	10ms precision: T210 ~ T251			
		1ms precision: T252 ~ T255			
		16-bit up counter: C0 ~ C199			
	Counter	32-bit bi-directional counter: C200 ~ C235			
		32-bit high speed counter: C236 ~ C255			
	Data register	D0 ~ D7999			
Elements	Local data register	V0 ~ V63			
	Offset addressing register	Z0 ~ Z15			
	Special data register	SD0 ~ SD255	SD0 ~ SD255		
	Auxiliary relay	M0 ~ M1999 M0 ~ M2047			
	Local auxiliary relay	LM0 ~ LM63	•		
	Special auxiliary relay	SM0 ~ SM255			
	State relay	S0 ~ S991	S0 ~ S1023		
	Internal timed interrupt	3	3		
	External interrupt	8	16		
	High-speed counter	6	6		
Interrunt	interrupt	0	0		
menupt	Serial port interrupt		8		
	PTO output complete		2		
	interrupt		2		
	Power failure interrupt		1		
	Basic instruction	0.0905	0.3uS		
	processing time				
General	Real time clock	Yes	Yes		
		(power-failure memory-hold time: >1	(power-failure memory-hold time: 100		
		year)	hs)		
	Analog potentiometer	2 (precision: 8-bit)	2 (precision: 8-bit)		
	Ports	PORTO: RS-232			
Communication		PORT1: RS-232/RS-485			
	Protocol	Modbus, Free port, Programming port	Modbus, Free port, N:N bus,		
			Programming port		
Access control	Password type	Upload, download, monitoring	Opload, download, monitoring,		
program	Upload disabling	Yes	Yes		
protection		200,000 bs (around fixed, minimum mechanical stress and temp (humidity control)			
	Relay output	100,000 hs (ground-fixed, minimum mechanical stress & no temp /humidity control)			
MTBF		300,000 hs (ground-fixed, minimum mechanical stress and temp./humidity.control)			
	Transistor output	150,000 hs (minimum mechanical stress and no temp /humidity control)			
Life span of	220\/ac/15\/A/inductive	1 s ON / 1s OFF 3 200 000 times			
output relay	220Vac/30VA/ inductive	1s ON / 1s OFF 1 200 000 times			
contacts	contacts 220Vac/72VA/ inductive 1s ON / 1s OFF 300 000 times				
Power supply	Input voltage range	$90Vac \sim 264Vac$ (for normal operation)	85Vac ~ 264Vac (for normal operation)		
Note:	par ronago rango				
See IVC1 Series PLC User Manual for the speicification, installation instruction, operation and maintenance of IVC1 series PLCs					
See IVC2 Series PLC User Manual for the speicifcation, installation instruction, operation and maintenance of IVC2 series PLCs.					

1.1.2 Outline Of IVC1 Series Basic Module

The outline and structure of the IVC1 series basic module are shown in the following figure (example: IVC1-1614MAR):

Figure 1-1 Outline and structure of IVC1 series basic module

As shown in Figure 2-1, PORT0 and PORT1 are for communication. PORT0 is RS232, and use socket Mini DIN8, while PORT1 is RS485 or RS232. The bus socket is for connecting extension modules. The mode selector switch can be set to ON, TM or OFF.

1.1.3 Outline of IVC2 Series Basic Module

The outline and structure of IVC2 series basic module is shown in the following figure (example: 64-point basic module):

Figure 1-2 Outline and structure of IVC2 series basic module

The battery socket is designed for the CR2032 button lithium battery. The bus socket is for connecting extension modules. The communication port PORT0 is RS-232 and uses socket Mini DIN8, while the communication port PORT1 is RS-485 or RS-232. The mode selector switch can be set to ON, TM or OFF.

1.2 AutoStation Programming Software

AutoStation is a programming software specialized for IVC1 and IVC2 series PLCs. You can download it at www.invt.com.cn.

The AutoStation software is a Windows-based diagram programming-tool, operated through the mouse and keyboard. Three programming languages are available: ladder diagram (LAD), instruction list (IL) and Sequential Function Chart (SFC).

To connect the AutoStation programming platform to your PLC, you can use directly the serial port programming cable, or the Modbus network through serial port conversion, or the Internet through a modem.

Refer to the AutoStation Programming Software User Manual for the Modbus programming and remote monitoring.

1.2.1 Basic Configuration

AutoStation programming software requires an IBM PC and Microsoft Windows series OS. The compatible OSs include Windows 98, Windows Me, NT 4.0, Windows 2000 and Windows XP.

The minimum and recommended configuration of the PC are listed below:

Item	Minimum Recommended		
CPU	Intel Pentium 233 equivalent or above	Intel Pentium 1G equivalent or above	
Memory	64M	128M	
Display card	Supportive of 640 × 480 resolution and 256 colors Supportive of 800 × 600 resolution and 65535		
Communication port	A RS-232 serial port with DB9 socket (or a USB port and a USB-RS232 converter)		
Others	Invt dedicated PLC programming cable		

1.2.2 AutoStation Installation

The AutoStation installation package issued by Invt Auto-Control Technology Co., Ltd. (for short, Invt) is an executable program. Double click it to start the installation, and follow the prompts step by step. You can select an installation path according to your actual need.

After the installation, the **Invt Auto-Control Technology** program group will be added to the start menu. A AutoStation shortcut icon will also be added to the desktop.

You can uninstall the AutoStation software through the Windows **Control Panel**. To install a new version AutoStation, you have to uninstall the present version first.

1.2.3 AutoStation Operation Interface

The main interfaces include 7 sections: Menu, Tool bar, Project Manager window, Instruction Tree window, Information window, Status bar and Operation area.

Figure 1-3 AutoStation main interface

For the usage of AutoStation programming software, refer to the AutoStation Programming Software User Manual.

1.2.4 Programming Cable

You can use the Invt dedicated programming cable to program and debug the PLC. Note that there are two kinds of cables, one being optically isolated and hot swappable; the other being non-isolated and not hot swappable. Neither of them requires setting jumpers.

See the following figure for the connection of the programming cable.

Figure 1-4 Connection of programming cable

1.3 Communication Function

Each IVC series PLC basic module has two integrated serial ports: PORT 0 and Port 1. The Profibus and Canbus extension modules are also available for the communication in a fieldbus network. The two serial ports of the basic module are compatible with Modbus, N:N bus and user-defined free port protocols.

1.3.1 Modbus Protocol Network

The basic module can set up a RS-485 Modbus network with multiple inverters, PLCs and other intelligent devices through the RS-485 on Port 1, or through Port 0 and a RS-232/485 converter. The maximum communication distance is 1200 meters, and maximum baud rate is 38400bit/s. RTU and ASCII transmission modes are optional. The basic module can communicate one-to-one with inverters, PLCs, touch screens and meters through the RS-232 port on PORT 0 or Port 1. The maximum communication distance is 15 meters; and maximum baud rate is 38400bit/s. For details about the Modbus network, see *Chapter 10 Using Communication Function* and *Appendix 7 Modbus Communication Protocol (IVC Series)*.

1.3.2 N:N bus Protocol Network

The IVC1 series PLC is embedded with Invt-developed N:N bus communication protocol, capable of setting up an N : N communication network through the Port 1 RS-485 port, or through PORT 0 and a RS-232/485 converter. The N:N bus communication protocol allows single/double-layer networking and data exchange among 2~32 PLCs with the maximum baud rate of 115200bps.

For details about the N:N bus network, see Chapter 10 Using Communication Function.

1.3.3 Free Port Protocol Network

The free port protocol allows communication with customized data format. It supports ASCII and binary system. In this communication mode, the PLC can communicate with various equipment with customized formats, such as inverter, bar-code scanner, instrument, and other intelligent devices. PLC can communicate with a single device in the RS-232 or RS-485 mode, or form a RS-485 network when there are multiple devices.

For details about the free port protocol communication, see Chapter 10 Using Communication Function.

1.4 Makeup Of Document System Of IVC Series Small PLCs

You can download the documents of IVC series small PLC at www.invt.com.cn. If you need the paper copy of the document, please contact your agent.

1.4.1 Model Selection Instruction

IVC1 Model Selection Manual IVC2 Technical Manual

1.4.2 Basic Module User Manual

IVC1 series
IVC1 Series PLC Quick Start User Manual
IVC1 Series PLC User Manual

1.4.3	Programming	Manual

IVC Series Small PLC Programming Manual

1.4.4 Programming Software User Manual

AutoStation Programming Software User Manual

1.4.5 I/O Extension Module User Manual

IVC1 series IVC1 Series PLC Passive I/O Extension Module User Manual

1.4.6 Special Module User Manual

IVC1 series
IVC1-4AD Analog Input Module User Manual
IVC1-4DA Analog Output Module User Manual
IVC1-4PT RTD Module User Manual
IVC1-4TC Thermalcouple Module User Manual
IVC1-5AM Analog Input/Output Module User Manual

IVC2 series
IVC2 Basic Module Quick Start Manual
IVC2 Series PLC User Manual

IVC2 series
IVC2 Series PLC Passive I/O Extension Module User
Manual
IVC2 Series PLC Active I/O Extension Module User
Manual

IVC2-4AD Analog Signal Module User Manual
IVC2-4AM Analog Signal Input/Output Module User
Manual
IVC2-4DA Analog Signal Output Module User Manual
IVC2-4LC Temperature Control Module User Manual
IVC2-4PT RTD Module User Manual
IVC2-4TC Thermocouple Module User Manual
IVC2-8AD Analog Input Module User Manual
IVC2-8TC Thermocouple Module User Manual

IVC2 series

Chapter 2 PLC Function Description

This chapter introduces the programming resources, theories and system configuration of IVC series PLC, as well as how to set PLC running and operation modes. The system commissioning functions and commissioning software are also introduced.

2.1 Programming Resources And Theories

2.1.1 Programming Resources

	•						
	Item		Specification and remarks				
1/0	Max. I/O points	128 (theoretical)					
configuration	Externsion module number	<4 (sum of I/O extension mo	dules and special modules)				
User file	Program capacity	12k steps					
capacity	Data block capacity	8000 D elements					
Instruction	Basic instruction	0.3µs/instruction					
speed	Application instruction	Several µs per instruction ~ s	several hundred µs per instruction				
Instruction	Basic instruction	32					
number	Application instruction	226					
	I/O points	128 I/128 O (Input: X0 ~ X17	7. Output Y0 ~ Y177) ^{Note 1}				
	Auxiliary relay	2048 (M0 ~ M2047)					
	Local auxiliary relay	64 (LM0 ~ LM63)					
	Special auxiliary relay	256 (SM0 ~ SM255)					
Device	State relay	1024 (S0 ~ S1023)					
configuration	Timer	256 (T0 ~ T255) Note 2					
Note 7	Counter	256 (C0 ~ C255) Note 3					
	Data register	8000 (D0 ~ D7999)					
	Local data register	64 (V0 ~ V63)					
	Offset addressing register	16 (Z0 ~ Z15)					
	Special data register	256 (SD0 ~ SD255)					
	External input interrupt	16 (triggering edge is user co of terminals X0 ~ X7)	onfigurable, corresponding to the rising and falling edge s				
la ta an an t	High speed counter interrupt	6					
Interrupt	Internal timer interrupt	3					
configuration	Serial port interrupt	8					
	PTO output complete interrupt	2					
	Power failure interrupt	1					
a	Port	2 asynchronous serial comm	unication ports. Port 0: RS-232. Port 1: RS-232 or RS-485				
Communication	Protocol	Modbus, Freeport, N:N bus (enabled	Invt dedicated protocol). 1 to N or N to N communication				
		X0. X1	Single input: 50kHz, Total frequency (X0 ~ X5); < 80kHz				
	High speed counter	X2 ~ X5	Single input: 10kHz				
	High speed pulse output	Y0, Y1	100kHz (2 independent outputs, and only for transistor outputs)				
	Digital filtering terminals	X0 ~ X7 (all the other termina	als use hardware filtering)				
	Analog potentiometer ^{Note 4}	2	-				
	Subprogram	Maximum number: 64. Maxin	num nesting levels: 6. Local variables and variable alias				
Special	Cappiogram	are supported. Each subprog	ram can provide up to 16 parameter transfer				
function		Upload password	3 kinds of password. Not longer than 8 letters or				
laneton		Download password	numbers. Case sensitive				
	User program protection	Monitor password					
		Subprogram password	Not longer than 16 letters or numbers. Case sensitive.				
		Other protections	Formatting and uploading ban enabled				
	Programming mode Note 5	AutoStation programming software Note 6	IBM PC or compatible computer is required				
	Real time clock	Built-in, 100h of working time for more than 2mins before t	after power failure (the basic module must have worked he power failure)				

Table 2-1 IVC1 Programming resources

Table 2-2	IVC2 programming	resources
-----------	------------------	-----------

Nama	Specification and remarks
INGILIE	opecification and remarks

	Name	Specification and remarks				
1/0	Max. I/O points	512 (256 l/256 O)				
configuration	Externsion module number	<8 (sum of I/O extension mod	dules and special modules)			
User file	Program capacity	12k steps				
capacity	Data block capacity	8000 D elements				
Instruction	Basic instruction	0.09µs/instruction				
speed	Application instruction	5µs/instruction ~ 280µs/instru	uction			
Instruction	Basic instruction	32				
number	Application instruction	221				
	I/O points	256 I/256 O (Input: X0 ~ X37	7. Output: Y0 ~ Y377) ^{Note 1}			
	Auxiliary relay	2000 (M0 ~ M1999)				
	Local auxiliary relay	64 (LM0 ~ LM63)				
	Special auxiliary relay	256 (SM0 ~ SM255)				
Dovice	State relay	992 (S0 ~ S991)				
Device	Timer	256 (T0 ~ T255) Note 2				
Note 7	Counter	256 (C0 ~ C255) Note 3				
	Data register	8000 (D0 ~ D7999)				
	Local data register	64 (V0 ~ V63)				
	Offset addressing	16 (70 ~ 715)				
	register	10 (20 213)				
	Special data register	256 (SD0 ~ SD255)				
Interrupt	External input interrupt	16 (triggering edge is user co terminals X0 ~ X7)	onfigurable, corresponding to the rising & falling edge s of			
configuration	High speed counter interrupt	6				
	Internal timer interrupt	3				
Communication	Port	2 asynchronous serial comm	unication ports. Port 0: RS-232. Port 1: RS-232 or RS-485			
function	Protocol	Modbus, Freeport. 1 to N cor	nmunication enabled			
	Lligh an and accentar	X0, X1	Single input: 50kHz. Total frequency (X0 ~ X5): < 80kHz			
	High speed counter	X2 ~ X5	Single input: 10kHz			
	Lligh anod pulse output	V0 V1	100kHz (2 independent outputs, and only for transistor			
	High speed pulse output	YU, YI	outputs)			
	Digital filtering terminals	X0 ~ X17 (all the other termin	hals use hardware filtering)			
Special	Analog potentiometer ^{Note}	2				
		Maximum number: 64. Maximum nesting levels: 6. Local variables and variable alias				
function	Calling of subprograms	are supported. Each subprogram can provide up to 16 parameter transfer				
		Upload password	Objects of a second Net law as they Object as			
	User program protection	Download password	3 kinds of password. Not longer than 8 letters or			
		Monitor password				
	Programming mode Note 5	AutoStation programming software Note 6	IBM PC or compatible computer is required			
	Real time clock	Built-in, powered by backup b	pattery			

Notes:

Note 1: The X and Y elements are addressed in octal system. For example, X10 stands for the eighth input point. Note 2: Based on the timing precision, the T device addresses fall into three categories:

- 1) 100ms: T0 ~ T209
- 2) 10ms: T210 ~ T251
- 3) 1ms: T252 ~ T255

Note 3: Based on the width and function of count value, the C device addresses fall into three categories:

1) 16 bit up counter: C0 ~ C199

- 2) 32 bit up and down counter: C200 ~ C235
- 3) 32 bit high speed counter: C236 ~ C255

Note 4: The analog potentiometer is an instrument that you can use to set the PLC device value.. You can use a Philips screw driver to wind the potentiometer clockwise to the maximum angle of 270°, and the device value will be set from 0 to 255. Note that the potentiometer could be damaged if you wind it clockwise more than 270°.

Note 5: The element values can be forcedly set to facilitate commissioning and analyzing user program and streamline the commissioning. You can force up to 128 bit elements and 16 word elements at the same time.

Note 6: The user program can be modified online.

Note 7: Partial PLC elements are reserved. Avoid using those elements in the user program. For details, see *Appendix* 3 *Reserved* Elements .

2.1.2 System Running Mechanism (Scan Cycle Model)

IVC series PLC basic module runs according to the scan cycle model.

The system cyclically executes the following four tasks one by one: user program execution, communication, internal tasks and I/O update. Each round is called a scan cycle.

Figure 2-1 PLC operation mechanism

User program execution

The system will execute user program instructions one by one from the beginning till the main program ending instruction.

Communication

Communicate with the programming software to receive and respond to the instructions such as download, run and stop.

Internal tasks

Processing various system internal tasks, such as refreshing panel indicators, updating software timer, refreshing special auxiliary relays and special data registers.

I/O update

The I/O update includes two stages: input update and output update.

Output update: open or close the output terminal based on the value of the corresponding Y device (ON or OFF). Input update: convert the ON or OFF state of input terminals to the value of the corresponding X device (ON or OFF).

2.1.3 Watchdog Function For User Program Execution

The watchdog function enables the system to monitor the user program execution time during every scan cycle, and stop the user program if the running time exceeds the preset limit. You can set the watchdog time in the **Set Time** tab after double clicking the **System block** in AutoStation main interface.

2.1.4 Constant Scan Mode

In the constant scan mode, every scan cycle takes the same time. You can set the constant scanning time in the **Set Time** tab after double clicking the **System block** in AutoStation main interface. By default, the **Constant scanning time setting** is zero, which means no constant scan. The actual scan cycle will prevail when the actual scan cycle is bigger than the constant scan cycle.

Note

The Constant scanning time setting must not be set bigger than the Watchdog time setting.

2.1.5 User File Download And Storage

You can download a user file to the basic module to control the basic module.

The user file include user program, data block, system block and auxiliary user information. The auxiliary user information include the user program variable list and the source file of user data.

You can select to download the user program, data block or system block. Whatever you select, the corresponding auxiliary user information will always be downloaded.

For IVC2 series PLC, the downloaded user program, data block and system block will be stored permanently in the basic module EEPROM area, while the downloaded auxiliary user information will be stored in the battery backed RAM area.

For IVC1 series PLC, all user files will be stored permanently in the basic module FLASH area.

Note

1. To embed the downloaded files into the basic module, the basic module power supply must be maintained for more than 30s after the download.

2. If the backup battery fails in IVC2 series PLC, the auxiliary user information will be lost, the annotation for the user program will not be uploaded, and system will report "User information file error". But the user program will be executed after all.

2.1.6 Initialization Of Elements

When the PLC changes from STOP to RUN, it will initialize its elements according to battery backed data, EEPROM data, data block and device value. The priorities of various data are listed in the following table.

Table 2-3 PLC data initialization priorities

Data type	Power OFF \rightarrow ON	$STOP \to RUN$
Battery backed data	Highest	Highest
EEPROM data	High	High
Data block (precondition: the Datablock enabled is checked in the	Mid	Mid
Advanced Settings tab of System block)	NIG	Wild
Device value (Precondition: the Element value retained is checked in	_	Low
the Advanced Settings tab of System block)	_	LOW

2.1.7 Saving Data On Power Loss

Preconditions

Upon power loss, the system will stop the user program and save the device in the specified saving range to the battery backed files.

Device restoration after power on

If the battery backed files are correct, the PLC elements will restore their saved values after power on.

The elements outside of the saving range will be set to zero.

If the battery backed files are lost or incorrect, the system will set all elements to zero.

Setting saving range

You can set the device range in the **Saving Range** tab of **System block. See** Figure 2-2 and the following example. IVC1 series PLC supports only one group of saving range.

IVC2 series PLC supports two saving groups that form a union.

Example (IVC2):

Set M100 ~ M200 as the saving range in Group 1.

Set M300 ~ M400 as the saving range in **Group 2**.

In effect, both M100 ~ M200 and M300 ~ M400 are set as the saving range.

Inget Print		Advanced Be	ttine		menancation Fort
Saving Bange	0	utput Table	54	t Time	Input Filte
				Dete	at value
Beaup 1	Plant	and the second sec	Hart		
Element	502600	g pooleon to: Element	Element	fo payed	
M	100		100		Chief
	-	140	1 400	-	
3	and		432		Clinie
D	900	÷.	1500		Christ
0	100		100	14	Char
100	245		140		Contraction of the local division of the loc
-n-	246		10		Clear
н	300		100		Chu
5.	500	0	492		Clean
D.	500	0	1900	*	Clear
0	220		36		Clear
T	246	12	10	0	Clear
The config. per	areatas:	nut be down	loaded bet	ore they b	RECORD
effective. Not a	dipper o	FLE support	each (ask	en block o	ption Wew
the spatial bes	- and	interesting.	and the st	Participation of	

Figure 2-2 Setting saving range

Note

The power loss data saving function in IVC2 series PLC relies on the support of the backup battery. If batteries fail, all the saved elements will have uncertain values after power loss.

For IVC1 series PLC, the values of its saved elements are stored in the permanent memory.

2.1.8 Permanent Storage Of D Device Data

You can use the EROMWR instruction in the user program to write the D device values (D6000 ~ D6999) to the permanent memory EEPROM in IVC1 series PLC. The EEPROM operation will make the scan cycle 2ms ~ 5ms longer. The written data will overwrite the existing data in EEPROM.

Note

The EEPROM can be over-written for a limited number of times (usually one million). Do not overwrite EEPROM unless it is necessary, otherwise EEPROM could fail soon and lead to CPU fault.

2.1.9 Digital Filtering Of Input Terminals

The input terminals X0 ~ X17 of IVC2 series PLC and X0 ~ X7 of IVC1 series PLC use digital filtering to filter the noise at the terminal. You can set the filter constant in the **Input Filter** tab of **System block**.

The filter constant setting ranges are:

IVC2: 0 ~ 60ms. Default: 10ms.

IVC1: 0, 8, 16, 32 and 64ms. Default: 8ms.

2.1.10 No Battery Mode

The IVC2 series basic module can work without battery. When you select the **No battery mode** in the **Advanced Settings** tab of **System block**, the system will not report system errors caused by lack of battery (Battery-backed data lost, Forced-table lost and User information file error).

See the notice for the No battery mode in the Advanced Settings tab of Data block.

Note

IVC1 series PLC has no battery, therefore it does not support no battery mode.

2.1.11 User Program Protection

The IVC1 and IVC2 series PLCs provide mutiple levels of passwords and other protection measures.

Protection measures	Description
	After downloading system block to the PLC and checking the Formatting is prohibited option in the
	Advanced Settings tab in System block, the PLC internal user program, system block and data block are
Formatting ban	protected against formatting.
	To lift the formatting ban, you need to re-download the system block and uncheck the Formatting is
	prohibited option
Download password	Download limit
	If you select to disable the upload function during downloading process, it will be prohibited to upload the
Upload ban	program from PLC to PC. To enable the upload function, you must re-download the program and check to
	enable the upload function during the downloading process.
Upload password	Upload limit
Monitor password	Monitor limit
	The programmer can set passwords to protect the program, subprogram and interrupt subprogram against
	aunthrorized accessing and editing in AutoStation.
Program password	Password setting method: Right click the program and select Encrypt/Decrypt in the popped out shortcut
	menu, insert the password and confirm it. To cancel the password, just go through the same process and
	input the correct password.

Table 2-4 User program protection

Note

If you fail to input the correct password for continuously ten times, you will be banned from inputting password for the next 5 minutes.

2.2 System Configuration

2.2.1 System Block

The PLC configuration information, or system block file, is configured through the system block and is an important part of the PLC user file. Before using the PLC, you need to compile and download the system block file. The system block configuration includes configuring the following items:

- **Saving Range** (element saving range)
- **Communication Port** (Communication port and protocol setting)
- Input Filter
- Output Table
- Set Time (set watchdog time and constant scanning time)

After setting the system block, you can select **PLC-> Compile** <u>A</u>II to compile the system block file and be ready for download.

Saving Range

Upon power loss, the IVC1 and IVC2 series PLCs can save the data of elements in the preset saving range to SRAM, so as to use them after the power on.

You can set the saving range in the Saving Range tab, as shown in Figure 2-3.

- Input Point (Startup mode of the input point)
- Priority Level Of Interruption
- Special Module Configuration
- Advanced Settings (data block, element value retain, no battery mode and formatting ban)

Evening Range Dartport Table Set Time Taport Filte Brage 1 Default value Default value M 100 100 Cheat S 500 492 Cheat D 500 1500 Cheat T 246 100 Cheat Brager 1 Starting position for town of cheat Number of Cheat Browner Starting position for town of cheat Number of Cheat Browner Starting position for town of cheat Cheat D 500 452 Cheat D 500 1500 Cheat T 246 1500 Cheat T 246 100 Cheat T 246 10 Cheat	Severing Runge Durbort Table Set Time Travel Filte Brought Value Brower Stating position for Several Element several M 100 S 900 H 100 C 100 Chear C 100 Chear Filter Stating position for too right Chear C 100 Chear Filter Stating position for too right Chear S 900 Chear Filter Stating position for too right Chear D 900 Chear Filter Stating position for too right Chear D 900 Chear Filter Stating position for too right Chear D 900 Chear Filter Fil	Inget Print		Advanced Set	titure	C.	menication Fort
Detault value Bonever Spe Stating position for seving Element Number of Elements seved M 100 0 S 900 492 D 900 1900 C 100 0 T 246 100 S 500 100 C 100 0 T 246 100 Stating position for tool Output S 900 0 Bernerit Output B 900 D 900 S 900 B 00 S 900 D 900 S 900 Chere 100 Chere 100 Chere 100 Chere 100 Chere 100 Chere 00 T 246 T 10	Detault value Except Stating position for seving Element Number of Element saved M 100 482 Clear D 900 1900 Clear C 100 Clear Clear T 246 100 Clear S 900 1900 Clear T 246 100 Clear S 900 100 Clear Bernert Stating position for coving Element Number of Element S 900 1900 Clear D 900 1900 Clear D 900 1900 Clear T 246 100 Clear T 246 100 Clear T 246 100 Clear T 246 10 Clear T 246 10 Clear	Saving Range	0	utput Table	50	4 Time	Input Filte
Brown Storing position for soring Element Number of Elements saved N 100 0 S 900 482 D 900 1900 C 100 0 T 246 100 S 900 100 T 246 100 S 900 100 Elements Chur T 246 100 S 900 100 Chur Chur D 900 0 Bernent Chur D 900 0 S 900 0 D 900 0 Chur 100 0 D 900 0 D 900 0 D 900 0 D 900 0 Chur Chur Chur Chur T 246 10	Biosept Stating position for sering Demant Number of Element's saved M 100 Ches S 900 482 D 900 1500 C 100 Ches T 246 100 S 900 482 Element Ches T 246 100 S 900 482 D 500 Ches Benerit Number of Element Ches Number of Element Ches Ches S 900 482 Ches D 500 1500 Ches C 220 36 Ches T 246 10 Ches					Deter	di value
Elements Stating position for type Number of Elements Number of Elements N 100 0 S 900 482 D 900 1900 C 100 0 T 246 100 S 900 100 T 246 100 Stating position for tool Namber of Elements S 900 482 D 900 100 D 900 100 D 900 100 D 900 100 T 246 10	Biosever Solding position for bype Number of Elements raived M 100 100 S 900 482 D 900 1900 C 100 100 T 246 100 Element Number of Element Number of Element Cheat D 900 100 C 100 Cheat S 900 100 Cheat Cheat D 900 100 S 900 482 D 900 1900 C 220 36 T 246 10 Cheat Cheat T 246 100 C 220 36 Cheat Cheat T 246 10 Cheat Cheat T 246 10	Beaup 1					
Ne 100 100 Cheat S 500 482 Cheat D 500 1900 Cheat C. 100 100 Cheat T 246 100 Cheat Bittering position for twoin Number of Element Cheat Cheat M 300 482 Cheat Cheat D 500 482 Cheat Cheat M 300 482 Cheat Cheat D 500 482 Cheat Cheat T 246 1500 Cheat Cheat T 246 10 Cheat Cheat	NH 100 100 Cheat S 500 482 Cheat D 900 1900 Cheat C 100 100 Cheat T 246 10 Cheat Store 2 Staring position fer Number of Store 2 Staring Element Number of S 900 482 Cheat D 900 100 Cheat S 900 482 Cheat D 900 1500 Cheat T 246 10 Cheat T 246 100 Cheat T 246 10 Cheat T 246 10 Cheat T 246 10 Cheat The config. parameter must be downloaded before they become effective. Not of types of PLC support each system block agtion. New	Element	5(20)	g poolition for	Numbe	for narrand	
S 500 482 Char D 500 1500 Char C 100 1500 Char T 246 10 Char Bitemant Starting position for coving Element Namber of Element boved Char M 300 482 Char D 500 482 Char D 500 482 Char D 500 482 Char T 246 100 Char T 246 100 Char	S 900 442 Char D 900 1900 Char C 100 100 Char T 246 10 Char Sineting position for toole coving Element N 200 2 Char S 900 2 Char D 900 2 Char C 200 3 Char T 246 10 Char Char C 200 2 Char T 246 10 Char Char Char C 200 2 Char T 246 10 Char Ch	M	100	-	100		Chief
S 500 452 Char D 500 1500 Char C 100 100 Char T 246 10 Char T 246 10 Char Beneric Starting position for toor Number of Element based Element based M 300 452 Char D 500 452 Char D 500 452 Char T 246 10 Char T 246 10 Char	S 500 452 Clear D 500 1500 Clear C 100 100 Clear T 246 10 Clear T 246 10 Clear Foxer Starting position for coving Element Number of Element Clear N 300 492 Clear D 500 492 Clear D 500 1500 Clear T 246 10 Clear T 246 10 Clear			747	1.00	-	
D 500 1500 Chura C. 100 100 Chura T 246 10 Chura T 246 10 Chura Element Starting position for coving Element Number of Element record Chura M 300 442 Chura D 500 1500 Chura T 246 10 Chura T 246 10 Chura	D 500 1500 Chur C. 100 100 Chur T 246 10 Chur Brown 2 Serving Element Namber of Elements served Chur M 300 100 Chur S 500 492 Chur D 500 1500 Chur T 246 10 Chur T 246 10 Chur T 246 10 Chur T 246 10 Chur	2	and	121	422		Clean
C. 100 Churt T 246 10 Churt T 246 10 Churt Element tool Starting position for coving Element Number of Elements rewed Number of Elements rewed M 00 482 Churt S 900 482 Churt D 500 36 Churt T 246 10 Churt	C. 100 100 Chur T 246 100 Chur 5000 2 Elevent 5000 5 5 500 5 5 500 5 7 246 100 Chur T 246 100 Chur 100 Chur 100 100 Chur 100 100 Ch	D	900	0	1500	5	Clean
T 246 10 Clean T 246 10 Clean Exercise Starting position free toxing Element Number of Elements toxind M 300 482 Clean S 900 482 Clean D 500 1500 Clean T 246 10 Clean	T 246 10 Class T 246 10 Class Elevent tope Cong Elevent Number of Elevents served Elevents served M 300 432 Class D 500 1500 Class C 220 36 Class T 246 10 Class	0	100		100	14	Charl
T 246 10 Chear Stating position for toole Narabar of Element Narabar of Element Narabar of Element M 300 482 Chear S 900 482 Chear D 500 1500 Chear T 246 10 Chear	T 246 10 Clear Stating position for twoe Number of Elements record M 300 100 Clear S 900 482 Clear D 900 1500 Clear C 220 35 Clear T 246 10 Clear		1000	(W)	harris		- 1- M (1)
Starling position.tet twoe Namber of Element Number of Elements sovred M 300 100 Chee S 500 492 Chee D 500 1500 Chee T 246 10 Chee	Starting position for twoe Number of Element Element M 300 100 Chur S 900 492 Chur D 900 1900 Chur T 246 100 Chur T 246 10 Chur The config. pasameter mult be downloaded before thep become effective. Not all upper of PLC support each option block again. Wew Mere	-Ti	246		10	2	Clean
S 900 482 Chur D 500 1500 Chur C. 220 36 Chur T. 246 10 Chur	S 900 900 900 1500 Chee D 500 90 1500 Chee C 220 96 96 Chee T 246 9 10 0 Chee T 246 9 10 0 Chee The config. patameters mult be downloaded before they become effective. Not all upper of PLC support each option block option. New	H	300		100	1 Indico	Chur
D 500 Cher C 220 S 36 Cher T 246 10 Cher	D 900 11900 Chee C 220 36 Chee T 246 10 Chee T 246 Chee T 246 Chee T 246 Chee T 246 Chee T 246 Chee T 246 Chee The config. pasameters must be downloaded before they become effective. Not all yoes of PLC support each option block option. New	4	500	-	492		Clean
D Solit Fiscal Clear C. 220 26 26 Chear T. 246 10 Chear	C. 220 36 Clear T. 246 5 10 5 Clear The config: patameters must be downloaded before they become effective. Not all yoes of PLC support each option block option. New		600	(21)	+601		Ches .
C. 220 Char T. 246 T 10 Char	C 220 2 36 Char T 246 1 10 Char The config: pasameter mult be downloaded before they become effective. Not all speci of PLC support each option block option. New	D	200	*	1300	*	5.000
Ti 246 💭 10 💭 Char	T 246 T TO Chur The config: pasameters must be downloaded before they become effective. Not all yoes of PLC support each gaters block agtion. New	0	220	÷.	36		Clear
	The config. parameters must be downloaded before they become effective. Not all your of PLE support each gaters block option. New	T	246	10	10	6	Clear
The confirt naternation must be describeded before then become	effective. Not all types of PLE support each system block option. West	The confine rest	armet area	mut be down	and ad her	mathen be	
the system block option supported by the PLC by pressing F1.							
the system block option supported by the PLC by persong F1.							

Figure 2-3 Setting element saving range

Note

The element range and group number of the saving range are different for different PLC models.

By default, the D, M, S, T and C elements in a certain range will be saved.

You can change the defaults as you need. By clicking the **Clear** button on the right will set the corresponding number to zero.

For IVC2 series PLC, you can set two groups that form a union.

For IVC1 series PLC, you can set only one group.

Note

The T elements cannot be set in the saving range for IVC1 series PLC.

System operation upon power loss: PLC will save the elements in the saving range to the battery backed files. System operation upon power on: PLC will check the data in SRAM. If the data saved in SRAM is correct, it will remain unchanged. If the data is incorrect, PLC will clear all the elements in SRAM.

Communication Port

You can set the two PLC communication ports in the **Communication Port** tab of the **System block**, as shown in *Figure 2-4*. The items include protocol selection and setting the specific protocol parameters.

Special Madels Configuration	Frierity Lavel Of Interreption
Advanced Settings	Conveniention Port
PLC communication part (0) setting	
Program part protocol	
C Freepot protocol	Fired plan setting
O Nochan pestocni	Moduo witeg
CERDus Photocol	ECbia setting
No potocol O Preepot protocol	Fine put satisfy
C Freepolt protocol	Hudon refere
CEDuo Plotocol	IChar setting

Figure 2-4 Setting communication ports

By default, the communication port 0 uses program port protocol, while the communication port 1 uses no protocol. You can set as you need.

1. Program port protocol

By default, the communication port 0 uses the program port protocol, the dedicated protocol for the communication of IVC series PLC programming software. Under this protocol, you can set the communication baud rate between PC and port 0 through the serial port configuration tool of AutoStation. In the TM state, port 0 can only be used for programming communication.

2. Free port protocol

The free port protocol supports customized data file format, either ASCII or binary code. Only in the RUN state can a PLC use the free port communication, which cannot be used to communicate with the programming device. In the STOP state, port 0 can only be used for programming communication.

The configurable parameters include **Baud rate**, **Data bit**, **Valid bit**, **Parity**, **Stop bit**, **Allow start character detection**, **Allow end character detection**, **Intercharacter timeout** and **Interframe timeout**.

3. Modbus protocol

The Modbus communication equipment include a master and a slave. The master can communicate with the slave (including inverters) and send control frames to the slave, and the slave will respond to the master's requests.

Communication port 0 can be set as a slave, while communication port 1 can be set as a slave or a master.

The configurable parameters include **Baud rate**, **Data bit**, **Parity check**, **Stop bit**, **master/slave mode**, **Station no**., **Transmission mode**, **Timeout time of the main mode** and **Retry times**.

4. N:N bus protocol

N:N bus is an Invt-developed communication protocol that supports N to N communication in a small PLC network. The PLCs in a N:N bus network can automatically exchange part of their D and M elements. Both port 0 and port 1 can use N:N bus protocol.

Note

For the detailed information of communication protocols, see Chapter 10 Using Communication Function.

Input Filter

In the Input Filter tab, you can set the filter constant for a PLC input terminal. The digital filter can eliminate the noise at the input terminal. Only input terminals X0 ~ X17 (for IVC1 series: X0 ~ X7) use digital filter, while other digital input terminal use hardware filter. See Figure 2-5.

artem block	
Special Wedels Configuration Advanced Settings Saving Bange Ostpat Table Se	Frieritr Level Of Esterreption Commitation Fort t Time Espet Filter Impat Fein
	Delauit value
File constant of the input point	
The config parameters must be down effective. Not all types of PUC support free outern block colors supported be	nhaded before they became reach water block option. View the PLC by creacing P1.
a	Canal Help

Figure 2-5 Setting input filter

IVC2 setting range: 0ms ~ 60ms. Default: 10ms.

IVC1 setting range: 0ms, 8ms, 16ms, 32ms, 64ms. Default: 8ms.

Output Table

In the Output Table tab, you can set the state of output points when the PLC is in STOP state. See Figure 2-6.

Special Weddle C	officer stim	Frierite Level OF	Internation
Seving Benge 0a	tput Table Set To	ne Input Filter	Input Fern
© Duale	© Freeze	🔘 config	
d 1 2 3 V0 V2 V3 V4 V5 V7 V6 V1 V1 V1 V1 V1 V1 V1 V1 V1 V1	4 5 6 7 YID YIT YIT YIT YIT YIT YIT YIT YIT YIT YIT	0 1 2 3 4 5 6 7	i inc me me gF1

Figure 2-6 Setting output table

The output table is used to set the PLC output state when the PLC is stopped. The output states include:

- (1) Disable: When the PLC is stopped, all the outputs will be disabled.
- (2) Freeze: When the PLC is stopped, all the outputs will be frozen at the last status.
- (3) Configure: When the PLC is stopped, the marked outputs will be set as ON.

Set Time

See Figure 2-7.

Special Medale Configurati		Iris	rite Level (If In	srrestiss.
Seving Series Output Table	Set	Tine	Ispat File		Lapat Facal
			Default	oke	0
Watchdog line vetting	200		c	00	
Conduct scarring free refing	Ø			no	
Nate: The constant scaning watchdop tine	g firme so	ting ca	wet be larger	han Ib	

Figure 2-7 Setting time

1. Watchdog time setting

The watchdog time is the maximum user program execution time. When the actual program execution time exceeds the watchdog time, PLC will stop the execution, the ERR indicator (red) will turn on, and the system will output according to the system configuration. The watchdog time setting range is 0ms ~ 1000ms. Default: 200 ms.

2. Constant scanning time setting

With the constant scanning time set, system will scan the registers within a constant duration. Setting range: $0ms \sim 1000ms$. Default: 0ms.

3. Power loss detection time setting (for IVC2 only)

When the duration of power loss exceeds the power loss detection time, the PLC will change to STOP. The system will save the values of elements in the Saving Range. Setting range: 0ms ~ 100ms. Default: 0ms

Input Point

The Input Point setting tab is shown in Figure 2-8.

In this tab, you can set the following parameters:

1. Disable input point

Check the **Disable input point** to disable the input point startup function.

2. Input point

When the **Disable input point** is not checked, you can designate an input terminal (among X0 ~ X17) as a means of external RUN control. When the designated input terminal is ON, the PLC will be turned from STOP state to RUN state.

eten block	
Advanced Settings Special Hodale Configuration Saving Sames Ontret Table Set	Communication Fort Frierity Level Of Interrention Time Input Filter Input Fois
Statup works of the syst point	Default-vakais
PDinable input per	
Select an input point from XD to X17 a five D IP switch to set of DN position or fire stakes change of the input point to gettern entres into PUN stakes	n: the forced input point. When notifie system is in STOP visitual on DFF to DN is detected, the
	George Help

Figure 2-8 Setting input point

Priority Level Of Interruption

The Priority Level Of Interruption is shown in Figure 2-9.

The PLC built-in interrupts can be set as high priority or low priority.

System bloc	k					
Advert	ood Settings	_	Come	nication	7	
Earing Sansa	Datuat Table	Est Tine	Tunat	Tilter	Turat '	Palat
Consist Had	decyst reaction	Print	ite le	ral Of Tai	i errent	i an
OBSECT MAR	ALC CONTRACTOR		1.7 24	PAL OF LR	Carrieda.	
				Default va	lue	
Interreptio	Interruption Type	4		Frierity	L A	
a	ID input sizing (edge interry	pt.	Los		
t	21 input mining of	edge interry	got.	les		
2	IE input rising of	edge interry	ap t	Les		
3	33 input mining of	edge interry	got.	les		
4	14 input sizing of	edge intern	zo t	Les		
5	35 input rising of	edge interry	pt.	Les		
6	15 input sizing of	edge interry	ap t	Les		
7	27 input rising of	edge interry	pt.	les		
10	ID input trailing	g edge inter	rupt	Les		
11	21 input trailing	z edge inter	rupt	lee		
12	IE input trailing	g edge inter	rupt	Les		
13	33 input trailing	z edge inter	rupt	les		
14	14 input trailing	g edge inter	rupt	Les		
15	15 input trailing	z edge inter	rupt	les		
16	IS input trailing	g edge inter	rupt	Les		
17	IT input trailing	z edge inter	rupt	les		
18	PTD (TD) Dutput of	complete int	terput	Ti gh		
19	PTO CII Datpart o	complete int	arrpul	Ti ph		
20	high speed counts	er interrupt	L D	Les		
21	high speed counts	er interrupt	t d	les		
22	hish speed counts	er internut	1 2	Les	*	
<					>	
					_	
	OK	Cancel			Н	alp

Figure 2-9 Setting interrupt priority

Special Module Configuration

You can set the **Module Type** and **Module Property** in the **Special Module Configuration** tab, as shown in Figure 2-10.

Figure 2-10 Setting special module

1. Module Type

As shown in Figure 2-10, you can set the module type for No.0 ~ No.3 special modules.

Module Property

After selecting the **Module Type**, the corresponding **Module Property** will be activated. Open the dialogue box as shown below.

В	C10-4ADConfi	guration			\mathbf{X}
	AD convension speed	Automatic 💙	Initialization	Automatic 💌	
	Modil'y settings	Automatic 👻	Error status	D	
	Nodule ID	D	Module version	D	
	Use time(high word)	D	Line time) over word	D	
		Inpu	t channel_1		
	Mode Close	~	Average sampling time		
	Digital value		Upper limit of		
	Arvenage		Ourrent D	-	
	sampling value1		sampling value		
		Outp	ut channel		
	Mode	~	*Channel 0		
	Digital value		Upper linit of		
	at zero		dicital value	<u> </u>	
1	ioter L Té vervienend te ver	n bhan chaif as dt samh an	in the much de relation	ant the recommend	-
l	tem to null or "Auto"	i din der der son i rande , , , , , , , , , , , , ,	at any set the Departure	and dra correspond	
i	orresponding main	nodule.	at rear the bright	in address of the	
			OK	Cancel	

Figure 2-11 Setting special module property

In the dialogue box as shown in Figure 2-11, you can configure the channel for the special module, including **Mode** (signal features), **Digital value at zero**, **Upper limit of digital value**, and **Average sampling value**. Refer to the user manual of the specific special module for the meanings and configuration methods of the various parameters.

Advanced Settings

The advanced settings include **Datablock enabled**, **Element value retained**, **No battery mode** and **Formatting is prohibited**.

yetan hindé	
Seving Bange Ostrat T Special Medale Config Advanced Setting	ahle Set Time Innut Filter Innut Feint gratien Frierity Level Of Interruptics Communication Part
	Default value
Databloch: erabled	This PLC initializes the D registers with five databack in the process of xwetching from STOP status to RPUM status, (The "Statistics wetch" and "alarment value setumed" are both valid, and the "datablock valid" to in plonity!
Element value retained	During the setting, the element value initiae saved an image in the process of switching from STDP status to FURI statue, it connot be initialized (accept for elements that defined in saving range)
	When eithing the 24 and a fit wood discust sectors balang robust the barbary tax bare discust area instituced batis for even will not be reported
Promoting is prohibited	When setting the bit, the PLE formatting cannot be implemented. Be conclude statistic option. If the function and the download pactroxed are set at the same time, and it you longet the pactroxed, you cannot use the PLC.1
0	K Cancel Help

Figure 2-12 Advanced settings

Datablock enabled

Check the **Datablock enabled**, and the datablock will be used to initialize the D elements when the PLC changes from STOP to RUN.

Element value retained

Check the **Element value retained**, and the elements will not be initialized, but saved when the PLC changes from STOP to RUN.

Note

When the **Datablock enabled** and **Element value retained** are both checked, the **Datablock enabled** prevails. See 2.1.6 *Initialization Of Elements*.

No battery mode

Check this option, and the system will not report the battery backup data lost error and forced table lost error upon battery failure.

2.2.2 Datablock

The datablock is used to set the defaults for D elements. If you download the compiled datablock settings to the PLC, the PLC will use the datablock to initialize the related D elements upon PLC startup.

The datablock editor enables you to assign initial data to the D register (data memory). You can assign data to words or double words, but not to bytes. You can also add comments by inputting "//" to the front of a character string. See *AutoStation Programming Software User Manual* for detailed datablock instruction.

2.2.3 Global Variable Table

The global variables table enables you to give meaningful names for certain PLC addresses. The names are accessible anywhere in the project, and using them is in effect using the corresponding device.

The global variable

The global variable table includes three columns: Variable Name, Variable addr. and Comments.

The variable name can be made up of letters (case insensitive), numbers, underline or their mixture, but no spaces. The name cannot start with a number, nor be completely made up of numbers. Length: not longer than 8 bytes. The format of "device type + number" is illegal. No keywords shall be used. The keywords include: basic data type, instructions and the operators in the IL programming language.

The number of global variables shall not exceed 500. See Figure 2-13.

🗟 MAIN	😰 Global variable ta	ible *	41			
	Variable Name	Variable addr.	Commenta	^		
1	Stop button	X0				
2	Seco return	XI.				
3	Forward jogging	X2				
4	Reverse jogging	X3				
5	Forward locating	X4				
6	Reverse locating	XS				
7	Close point	X6				
8	System start	X7		~		

Figure 2-13 Global variable table

2.2.4 Setting BFM For IVC2 Serie Special Module

There is no need to set the addresses for IVC2 series special modules, for the basic module can detect and address them automatically upon power on.

Among the special modules, the analog extension module includes the analog input module and analog output module.

The parameters of these two special modules, such as the channel characteristics, zero point and maximum digital signal are by default applicable directly. However, when necessary, you can change the parameters in order to cater for your actual needs.

IVC2 analog input module

IVC2 analog input module exchanges information with its basic module through the BFM area.

When a user program runs on the basic module, the TO instruction will write data to the related registers in the BFM area of IVC2 special module, and change the default settings. The configuration data that can be changed includes zero digital signal, maximum digital signal, input channel signal characteristic, input channel ready flag, and so on. The basic module uses the FROM instruction to read the data from the BFM area of IVC2 analog input module. The data may include the analog-digital conversion result and other information.

IVC2 analog output module

IVC2 analog output module exchanges information with its basic module through the BFM area.

When a user program runs on the basic module, the TO instruction will write data to the related registers in the BFM area of IVC2 special module, and change the default settings. The configuration data that can be changed includes zero digital signal, maximum digital signal, output channel signal characteristic, output channel ready flag, and so on. The basic module uses the FROM instruction to read the data from, and uses the TO instruction to write the digital signal to be convertered to, the BFM area of IVC2 analog output module.

For details about the TO/FROM instruction, refer to *Chapter 6* Application Instructions. As for the information about various special modules, as well as their BFM areas, see the quick start manuals of the special module.

2.3 Running Mode And State Control

You can start or stop the PLC in any of the following three ways.

1. Using the mode selection switch

2. Feeding power to the designated input terminal (see Input Point in 2.2.1 System Block)

3. Programming software (by clicking <u>PLC</u> -> <u>Stop</u> in the main interface if the mode selection switch is set as TM or ON)

2.3.1 System RUN And System STOP States

The basic module states include RUN state and stop state.

RUN

When the basic module is in the RUN state, the PLC will execute the user program. That is to say, all the four tasks in a scan cycle, namely the user program execution, communication, internal tasks and I/O update, will be executed.

STOP

When the basic module is in the STOP state, the PLC will not execute the user program, but will still execute the other three tasks in every scan cycle, namely the communication, internal tasks and I/O update.

2.3.2 RUN & STOP State Change

How to change from STOP to RUN

1. Resetting the PLC

If the mode selection switch is set to ON, reset the PLC (including power-on reset), and the system will enter the RUN state automatically.

Note

If the **Disable input point** is not checked in the basic module system block, the corresponding input terminal must be ON, or the system will not enter the RUN state after reset.

2. Setting mode selection switch

When the PLC is in STOP state, setting the mode selection switch to ON will change the PLC to RUN state.

3. Powering the designated input terminal

If the **Disable input point** is not checked in the basic module system block, feeding power to the designated input terminal will change the PLC from STOP state to RUN state.

Note

The mode selection switch must be set to ON for the input terminal startup mode to be valid.

How to change from RUN to STOP

1. Resetting the PLC

If the mode selection switch is set to OFF or TM, resetting the system (including power-on reset) will change the PLC to STOP state.

Note

Even when the mode selection switch is ON, the system will also enter the STOP state after reset if the **Disable input point** is not checked in the basic module system block and the designated input point is OFF.

2. Setting mode selection switch

The system will change from RUN to STOP when you set the mode selection switch from ON or TM to OFF.

3. Using the STOP command

The system will enter the STOP state after executing the STOP command in the user program.

4. Auto-stop upon faults

The system will stop executing the user program when a serious fault (like user program error, or user program execution overtime) is detected.

2.3.3 Setting Output In STOP State

You can set the state of output terminals (Y) when the PLC is stopped. The three optional settings include:

1. Disable: When the PLC is stopped, all output terminals will be OFF.

2. Freeze: When the PLC is stopped, all the output terminals will be frozen at the last status.

3. Configure: You can decide which output will be ON and which will be OFF when the PLS is stopped according to the actual need.

You can find the above settings in the **Output Table** tab of the **System block**. See the *Output Table* in 2.2.1 System *Block*.

2.4 System Debugging

2.4.1 Uploading & Downloading Program

Downloading

The system block, data block and user program edited in AutoStation can be downloaded to the PLC through a serial port. Note that the PLC should be in the STOP state when downloading.

If you change a compiled program and want to download it, the system will ask you to compile it again, as shown in Figure 2-14.

Note

If you select No, the program compiled last time will be downloaded to the PLC, which means the changes are invalid.

If you have set a download password and have not entered it after starting the AutoStation this time, a window asking you to enter the password will pop up before the download can start.

Uploading

You can upload the system block, data block and user program from a PLC to your PC, and save them in a new project. If the battery backed data are valid, the user auxiliary information files will be uploaded together. See Figure 2-15.

Upload project 🔀						
]					
Program name						
Location	C:\Documents and Settings\					
PLC type	EC20					
Default editor	Instruction list 🕑					
Project description						
	OK Cancel					

Figure 2-15 Upload dialogue box

If you have set a upload password and have not entered it after starting the AutoStation this time, a window asking you to enter the password will pop up before the upload can start.

During the download, you can select to disable the upload function, which means no PC can upload the program from the PLC. To enable the upload function, you must re-download the program and check to enable the upload function during the downloading process.

2.4.2 Error Reporting Mechanism

The system can detect and report two types of errors: system error and user program execution error.

A system error is caused by abnormal system operation. While a user program execution error is caused by the abnormal execution of the user program.

Every error is assigned with a code. See Appendix 6 System Error Code.

System error

When system error occurs, the system will set the special relay SM3, and write the error code into the special data register SD3. You can obtain the system error information by accessing the error code stored in SD3.

If multiple system errors occur at the same time, the system will only write the code of the worst error into SD3. When serious system errors occur, the user program will halt, and the ERR indicator on the basic module will turn on.

User program execution error

When user program execution error occurs, the system will set the special relay SM20, and write the error code into the special data register SD20.

If the next application instruction is correctly executed, the SM20 will be reset, while SD20 will still keep the error code. The system keeps the codes of the lastest five errors in special data registers SD20 ~ SD24 and form a stack. If the code of the current error is different from the code in SD20, the error stack will be pushed down, as shown in Figure 2-16.

Figure 2-16 Push operation of the error stack

Only when serious user program execution error occurs will the user program halt and the ERR indicator on the basic module turn on. In less serious cases, the ERR indicator on the basic module will not turn on.

Checing the error information on-line

Connect the PLC with your PC through the serial port, and you can read various PLC state information through the AutoStation, including the system error and user program execution error.

In the main interface of AutoStation, click PLC -> PLC Info... to check the PLC information, as shown below:

rc i	nfo						×
E V.	rsiea						~
02	U type		BC20				
- V4	ration number	r	1.29				
E 80	E Scan rate (as)						
C a	rrant:		One				
5.	Maximinon value One						
Ni.	Ninison value Ora						
EB	n errer is	aformation					
Sy	tem error n	0.	0				
Sy	stam apport -	description	81 27	oten err	17		
Ex	ecution erry	or no.	0				
Ex	ecution erry	or description	Se er	ecation.	8TT 8T		
E Pr	ogram capi	ecity .					
Pr	Program capacity 12K steps						
ΞB	ttery yel	tage					
Vo.	ltape		3.07				
EB	naing stat	tus indication.					
S4	atus indica	tion	ates				Y
H = dal	.e 318.	Nodala type		Input	Ontypet	Fersiss.	
<				-			3

Figure 2-17 PLC information

The **System error no.** is the No. of the system errors stored in SD3, and **Execution error no.** is the No. of the execution error stored in SD20. The error description is for your reference.

2.4.3 Editing User Program Online

You can use the online edit function when you want to change the user program without stopping the PLC.

Warning

On occasions when casualties or property loss may occur, the online program editing function should be used by professionals with sufficient protection measures.

Method

After making sure that the PC-PLC communication has been setup and the PLC is in RUN state, click **Debug** -> **Online Edit** in the AutoStation main interface to enter the online edit state.

In the online edit state, you can edit the main program, subprograms and interrupts as usual. After the edit, click **PLC** -> **Download...** and the edited program will be compiled and downloaded to the PLC automatically. When the download completes, the PLC will execute the new program.

Limits

1. In the online edit state, you cannot change the global variable table or any local variable table, nor add or delete any subprogram and interrupt.

2. AutoStation will quit the online edit state if the PLC is stopped.

2.4.4 Clearing And Formatting

You can use the clearing operation to clear PLC element value, PLC program and PLC datablock. While through formatting, you can clear all PLC internal data and program.

PLC Element Value Clear

The PLC Element Value Clear function can clear all element values when the PLC is in STOP state.

Think it twice before using the clearing function, because clearing PLC element values may cause PLC operation error or loss of working data.

PLC Program Clear

The PLC Program Clear function can clear the PLC user program when the PLC is in STOP state.

Think it twice before using the clearing function, because after the PLC user program is cleared, the PLC will have no program to execute.

PLC Datablock Clear

The **PLC Datablock Clear** function can clear all the PLC datablocks when the PLC is in STOP state.

Think it twice before using the clearing function, because after the PLC datablock is cleared, the PLC will not initialize element D according to the presetting of the datablock.

PLC Format

The PLC Format function can format all PLC data, including clearing the user program, restoring the defaults, and clearing the datablock (when PLC is in STOP state).

Think it twice before using the formatting function, because this operation will clear all the downloads and settings in the PLC.

2.4.5 Checking PLC Information Online

PLC Info...

The PLC Info... function can obtain and display various PLC running information, as shown in Figure 2-18.

PLC	Info						×
	Marca 1						-
12	THE SLOP		3000				-
	LEO 19pa	-	8,00				
-	Version number	r - 1	1.00				
12	Derrard' Day						
	Noriview value for						
	Nextminum value Ons						
-	Ninison valos Ons						
-	E Sun errer intermution						
	Sytem error n	0.	0				
	System error	descraption	31 17	stem err	87		
	Execution err	or no.	0				
	Execution err	or description	31.00	ecstiss.	611.61		
12	Program cap	scity					
	Program capac	ity	128.1	teps			
B	Buttery vol	tage					
	Voltage		3.07				
Ξ	Renning sta	tus indication					
	Status indica	tion	ates				~
1.	dale no.	Nodale type		Input	Output	Fersies.	
~							2
		C	ок]			

Figure 2-18 PLC current operation information

PLC Clock

The PLC Clock function can be used to display and set PLC present time, as shown in Figure 2-19.

PLC Time			
Time setting -		-Date setting -	
Hours:	3	Years:	2001 🛟
Minutes:	16 🛟	Months:	2
Seconds:	52 🛟	Days:	14
·	Set time	Close	

Figure 2-19 Setting PLC clock

Displayed in the **PLC Clock** window is the present date and time of PLC. You can adjust the time setting and click the **Set time** button to validate it.

2.4.6 Write, Force And Element Monitoring Table

Write and force

During the debugging, some element values may need to be changed manually. You can use the write or force function. Difference between write and force is that written element values are one-off and may change with the program operation, but forced element values will be permanently recorded in the PLC hardware until being unforced. To use the write or force function, just select the element that needs changing, right click and select <u>Write Selected Element</u> or <u>Force...</u> All the element addresses used by the selected element will be listed in the dialog box. Modify the address value to be written or forced, click the OK button, and the value will be downloaded to the PLC. If these values are effective in the hardware, you will see the change in later debugging process.

The Write element value dialogue box is shown in Figure 2-20:

Vrite ele	ment valu	10		
address	data type	value	yes/no	OK
S20	BOOL	ON		Cancel

Figure 2-20 Write element value

The Force element dialogue box is shown in Figure 2-21:

Force elem	lent			×
address	data type	value	yes/no	OK
S20	BOOL	ON		Cancel

Figure 2-21 Force element

You can see a lock under the forced elements in the LAD, as shown in Figure 2-22:

	MAIN							₫ Þ	×
Va	riable addr	. Variable	Name	Variabl	е Туре	Data Type	Comments		^
				TEMP		BOOL			
				TEMP		BOOL			~
<								>	
No	×13	↑	X14	-[3ET	017 30 ⊕]			^
พา	X13	↑ [ZRST	0FF Ml	3]			
		t	RST	0)X 30 ⊕]				
		ł	ZRST	0FF 320 ⊕	13]			~
<								>	

Figure 2-22 Lock signs under forced elements

Unforce

You can unforce any forced elements when forcing them becomes unnecessary. To unforce an element, select the target element, right click and select **Unforce** to pop up a dialog box as shown in Figure 2-23. All the forced elements among the selected elements are listed in the dialog box. You can select to unforce any elements, and click the **OK** button to confirm. The forced value will be deleted from the PLC, so is the lock mark.

U	nforce			
	address X14	data type BOOL	yes/no	OK
				Cancer

Figure 2-23 Unforce

Element monitoring table

The element monitoring table (EMT) is responsible for monitoring the element value during the debugging. the program input and output elements can be added to the EMT so that they can be tracked after the program is downloaded to the PLC.

The EMT monitors the element value during the debugging. You can input the input & output elements, registers and word elements into the EMT during the debugging so that those elements can be monitored after the program is downloaded to PLC.

The EMT works in two modes: editing mode and monitoring mode. In the editing mode, no monitoring function can be carried out. In the monitoring mode, both the monitoring and editing functions are available.

In the monitoring mode, the displayed elements' values are updated automatically.

The EMT provides functions including editing, sequencing, searching, auto-updating of the current value, written value, forced value of the specified element or variant, and unforce.

See Figure 2-24 for the illustration of an EMT:

🔓 МА	AIN 🙆 EMT_1				<u> </u>
	Element Na	me data type	display form	ai current value	new value
1		WORD	Decimal		
2		WORD	Decimal		
3		WORD	Decimal		
4		WORD	Decimal		
5		WORD	Decimal		

Figure 2-24 Element monitoring table

2.4.7 Generating Datablock From RAM

This function can continuously read and display the value of up to 500 D registers in the PLC. The results can merge into the datablock or overwrite the original datablock.

Select PLC -> Generate Datablock From RAM... to pop up a window as shown in Figure 2-25.

Read The D	ata Regist	er Value	X
Input the dat	a register addre	(A max, of 5 can be read	00 address values at one time)
address	t value	display type	Read from RAM
			[Perge to datablock]
			Oververte datablock
			Ext

Figure 2-25 Reading data register value

Enter the range of the datablock to be read, click the **Read from RAM** button, and the data will be read into the list after the instruction is correctly executed.

You can select hex, decimal or octal or binary system in the field of Display type to display the data.

After reading the data successfully, the buttons of **Merge to datablock** and **Overwrite datablock** are enabled. Clicking **Merge to datablock** will add the results after the current datablock. Clicking **Overwrite datablock** will replace the contents in the datablock with the generated results. After exiting the register value reading window, the software will prompt that the datablock has changed and the datablock window will be opened automatically.

Chapter 3 Element And Data

This chapter details the description, classification and functions of the elements of IVC series small PLC.

3.1 Element Type And Function	
3.1.1 What Is A PLC Element	32
3.1.2 Element List	
3.1.3 Input And Output Points	34
3.1.4 Auxiliary Relays	35
3.1.5 State Relays	35
3.1.6 Timer	
3.1.7 Counter	
3.1.8 Data Register	
3.1.9 Special Auxiliary Relay	
3.1.10 Special Data Register	
3.1.11 Offset Addressing Register	
3.1.12 Local Auxiliary Relay	
3.1.13 Local Data Register	
3.2 Elements Addressing Mode	40
3.2.1 Kn Addressing Mode (Combined Bit-string Addressing Mode)	40
3.2.2 Z Addressing Mode (Offset Addressing Mode)	40
3.2.3 Kn Addressing In Combination With Z Addressing	41
3.2.4 Storing & Addressing 32-Bit Data In D & V Elements	41
3.3 Data	42
3.3.1 Data Type	42
3.3.2 Correlation Between Elements And Data Types	42
3.3.3 Constant	43

3.1 Element Type And Function

3.1.1 What Is A PLC Element

The PLC elements are virtual elements configured in PLC system design in order to replace the actual relays in the relay control circuits. PLC uses the elements to calculate and configure system function. Due to their virtual nature, the elements can be used repeatedly in the program, their number is in theory unlimited (only related to program capacity), and have no mechanical or electric problems like their actual counterparts. Such features make the PLC much more reliable than relay control circuits. In addition, it is easier to program and modify the logic. The types and functions of IVC series PLC elements are shown in the following figure.

Figure 3-1 Types and functions of PLC elements

In this manual, the elements are named according to their types. For example:

- Input point X, or "X element" for short
- Output point Y, or "Y element" for short
- Auxiliary relay M, or "M element" for short
- Data register D, or "D element" for short
- State relay S, or "S element" for short
3.1.2 Element List

The elements of IVC series PLC are classified according to their functions, and are easily accessible. The elements are listed in the following table.

		IVC1 series	IVC2 series	Numbered in
	I/O	128I/128O (Input: X0 ~ X177. Output: Y0 ~ Y177) ^{Note 1}	256I/256O (Input: X0 ~ X377.	Octal
	Auxiliary relay	2048 (M0 ~ M2047)	2000 (M0 ~ M1999)	Decimal
	Local auxiliary relay Note 5	64 (LM0 ~ LM63)	64 (LM0 ~ LM63)	Decimal
	Special auxiliary relay	256 (SM0 ~ SM255)	256 (SM0 ~ SM255)	Decimal
Element	State relay	1024 (S0 ~ S1023)	992 (S0 ~ S991)	Decimal
resources Note 4	Timer	256 (T0 ~ T255) ^{Note2}	256 (T0 ~ T255) Note 2	Decimal
	Counter	256 (C0 ~ C255) Note 3	256 (C0 ~ C255) Note 3	Decimal
	Data register	8000 (D0 ~ D7999)	8000 (D0 ~ D7999)	Decimal
	Local data register Note 5	64 (V0 ~ V63)	64 (V0 ~ V63)	Decimal
	Offset addressing register	16 (Z0 ~ Z15)	16 (Z0 ~ Z15)	Decimal
	Special data register	256 个 (SD0 ~ SD255)	256 个 (SD0 ~ SD255)	Decimal

Table 3-1	IVC series F	PLC elements
10010 0 1	100000000	20 01011101110

Notes:

1: The X and Y elements are addressed in octal system, and X10 represents the 8th input point. The I/O point number here is the system capacity, while the actual system I/O point number is determined by the actual system configuration (including extension modules and power supply).

2: The T elements are addressed according to the timing precision:

- 100ms: T0 ~ T209
- 10ms: T210 ~ T251
- 1ms: T252 ~ T255

3: The C elements are addressed according to the counter types and functions:

- 16bit up counter: C0 ~ C199
- 32bit bi-directional counter: C200 ~ C235
- 32bit high speed counter: C236 ~ C255

4: Part of PLC elements are reserved for internal tasks. Avoid using those elements in the user program. See Appendix 3 Reserved Elements .

5: These two elements are local variants that cannot be defined in the global variant table. When the user program calls subprograms or returns to the main program, they will be cleared, or be set through interface parameter transfer

3.1.3 Input And Output Points

Element mnemonic

- X (discrete input point)
- Y (discrete output point)

Function

The X and Y elements represent respectively the input state of hardware X terminal and output state of hardware Y terminal.

The state of X elements is obtained through the input image register, while the state of Y elements is output through the output circuit driven by the output image register. The two operations are carried out in the I/O Update stage of PLC scan cycle, as shown in Figure 3-2. For details, see 2.1.2 System Running Mechanism (Scan Cycle Model) It is obvious that there is a brief delay in PLC's response to the I/O. The delay is related to the input filter, communication, internal tasks and scan cycle.

Figure 3-2 Schematic diagram of I/O update

Classification

 $X0 \sim X17$ have digital filters whose filtering time can be set at the system block. Others use hardware filter. X0 ~ X5 can be used as the counting input point for high speed counters. Besides, X0 ~ X7 can also be used for inputting external interrupts, pulse tracking and SPD frequency detecting instruction.

Y0 and Y1 can be used for high speed output. Others are ordinary output points.

Elements numbered in

Octal, starting with 0. The X and Y elements of both the basic module and the I/O modules are numbered continuously like $0 \sim 7$, $10 \sim 17$, $20 \sim 27$, and so on.

Data type

Boolean (both X and Y)

Available forms

NO and NC contacts (dependent on which instruction uses it)

The NO and NC contacts have opposite state values. They are sometimes referred to as "a" contact and "b" contact.

You can use NO and NC contacts of the Y element during programming.

Value assignment

1. The X elements accepts only hardware input state value and forced operation state value. In the user program, they cannot be changed through output or instructions, nor be set during system debugging.

2. You can assign values to Y elements with the OUT instruction, or set the state value of Y elements, or even force or write Y element values during system debugging.

3. Through the system block, you can set the output states of Y elements in the STOP state.

3.1.4 Auxiliary Relays

Element mnemonic

Μ

Function

The M state elements of discrete type are similar to the transfer relays in the actual electrical control circuits. You can use them to save various transit states in the user program.

Elements numbered in

Decimal, starting with 0.

Data type

Boolean

Available forms

NO and NC contacts.

3.1.5 State Relays

Elemenet mnemonic

S

Alias

Step flag

Function

As the step flag, the S elements are used in the Sequential Function Chart (SFC). See *Chapter 7 SFC* Tutor.

Classification

S0 ~ S19: initial step flag

Others: normal step flag

Elements numbered in

Decimal, starting with 0

Data type

Boolean

Value assignment

1. Through instructions. 2. Write or force during system debugging.

Battery backed features

State	M elements in the	M elements outside			
Sidle	saving range	the saving range			
Power loss	Remain unchanged	Cleared			
$RUN \rightarrow STOP$	Remain unchanged	Remain unchanged			
$STOP \to RUN$	Remain unchanged	Cleared			
Note: The saving range is set through the system block. See					
2.2.1 System Block.					

Note

When using the N:N bus protocol, some M elements will be used by the system.

Available forms

1. Representation of steps (when used in STL instruction)

2. NO and NC contacts (when not used in STL instruction). Similar to M elements, the NO and NC contacts of S elements are available during programming.

Value assignment

1. Through instructions. 2. Write or force during system debugging.

Battery backed features

State	S elements in the	S elements outside	
State	saving range	the saving range	
Power loss	Remain unchanged	Cleared	
$RUN \to STOP$	Remain unchanged	Remain unchanged	
$STOP \to RUN$	Remain unchanged	Cleared	
Note: The saving	g range is set through	n the system block.	
See 2.2.1 Syst	em Block		

3.1.6 Timer

Element mnemonic

Т

Function

The T element contains a word element (2 bytes) and a bit element. The T word element can record a 16-bit value. The T bit element represents the timer coil state and is applicable to logic control.

Figure 3-3 T element

Classification

According to the timing precision, the T elements are classified into three types:

T element	Timing precision	
T0 ~ T209	100ms	
T210 ~ T251	10ms	
T252 ~ T255	1ms	

The T elements with the timing precision of 1ms are activated by interrupts, unrelated to the PLC scan cycle. Their action time is the most precise. The update and action time of other T elements are related to PLC scan cycles.

Elements numbered in

Decimal, starting with 0

Data type

Boolean, word

Available forms

The timing and action mode of T elements are determined by the timing instruction that uses them. There are four timing instructions: TON, TOF, TONR and TMON. See *Chapter 5 Basic Instructions* for details.

Value assignment

1. Through instructions. 2. Write or force during system debugging.

Battery backed features

State	T elements in the saving range (for IVC2 only)	T elements outside the saving range			
Power loss	Remain unchanged	Cleared			
$RUN \rightarrow STOP$	Remain unchanged	Remain unchanged			
$STOP \to RUN$	Remain unchanged	Cleared			
Note: The saving range is set through the system block. See					
2.2.1 System Block					

Note

The maximum timing value of T element is 32767. The preset value is $-32768 \sim 32767$. Because T elements act only when the counted value reaches or exceeds the preset value, it is pointless setting the preset value as a negative number.

3.1.7 Counter

Element mnemonic

С

Function

The C element contains a bit element and a word (or a double word) element. The word elements can record 16-bit or 32-bit counted numbers, and is used as a value in the program. The bit element represents the state of the counter coil and is applied to logic control.

Figure 3-4 C element

Classification

Two types: 16-bit counter and 32-bit counter

Elements numbered in

Decimal, starting with 0

Data type

Boolean, word or double word.

3.1.8 Data Register

Element mnemonic

D

Function

As a data element, the D elements are used in many calculation and control instructions as the operands.

Elements numbered in

Decimal, starting with 0

Data type

Every D element is a 16-bit register that can store data, like an 16-bit integer.

Two D elements can form a double word and store a 32-bit data, such as the long integer data or floating-point data.

Sign bit- Single word D element	MSB Dn element (n: 0 ~ 7999)	ŝB
Sign bit Double word D element	MSB Dn element (n: 0 ~ 7998) 	Dn + 1 element LSB (n: 0 ~ 7998)
The data range The data range	of single word D element: -32, 168 of double word D element: -2, 147,	~ 32, 767 483, 648 ~ 2, 147, 483, 647

Figure 3-5 D element

Available forms

The instructions that may use the C elements are classified into 4 types: CTU, CTR, DCNT and the high speed counter instructions. See *Chapter 5 Basic Instructions* and *Chapter 6 Application Instructions* for details.

The classification of C elements is shown below:

C elements	Туре	Applicable to
C0 ~ C199	16-bit up counter	CTU, CTR
C200 ~ C235	32-bit bi-directional counter	DCNT
C236 ~ C255	32-bit high speed counter	High speed I/O instructions

Value assignment

1. Through instructions. 2. Write or force during system debugging.

Battery backed features

State	C elements in the	C elements outside			
Siale	saving range	the saving range			
Power loss	Remain unchanged	Cleared			
$RUN \rightarrow STOP$	Remain unchanged	Remain unchanged			
$STOP \to RUN$	Remain unchanged	Cleared			
Note: The saving range is set through the system block. See					
2.2.1 System Block					

Note

In a double word D element, the higher 16-bit is in the first D element; and the lower 16-bit is in the second D element.

Available forms

The D elements are used in many calculation and control instructions as the operands.

Value assignment

- 1. Through initialization. 2. Through instructions.
- 3. Write or force during system debugging.

Battery backed features

Stata	D elements in the	D elements outside			
Sidle	saving range	the saving range			
Power loss	Remain unchanged	Cleared			
$RUN \rightarrow STOP$	Remain unchanged	Remain unchanged			
$STOP \to RUN$	Remain unchanged	Cleared			
Note: The saving range is set through the system block.					
See 2.2.1 System Block					

Note

Some D elements may be reserved for internal tasks when the FREQUENCY CONVERTER instructions or N:N bus protocol is used.

3.1.9 Special Auxiliary Relay

Element mnemonic

SM

Function

The SM elements are closely related to the PLC system function. They reflect PLC system function and system state. For details, see *Appendix 1 Special* Auxiliary Relay.

Classification

The frequently used SM elements include:

- SM0: PLC operation monitor bit. It is ON when the PLC is in RUN state.
- SM1: initial operation pulse bit. It is ON in the first scan cycle of PLC operation.
- SM3: system error. It is ON if any system error is detected after PLC is powered on or when PLC changes from STOP to RUN.
- SM10 ~ SM12: respetively the clock square-wave cycled at 10ms, 100ms and 1s (flipping-over twice in a cycle).

In addition, you can use, control or change the PLC system function by adjusting certain SM elements. Such elements include:

3.1.10 Special Data Register

Element mnemonic

SD

Function

The SD elements are closely related to the PLC system function. They reflect PLC system function parameters, state code and instruction execution data. See *Appendix 2 Special* Data Register for details.

Classification

- The frequently used SD elements include:
- SD3: system error code.
- SD50 ~ SD57: high speed pulse output monitor.
- SD100 ~ SD106: real time clock data.

In addition, you can change PLC system function parameters by changing certain SD elements. Such elements include:

SD66 ~ SD68: cycle of timed interrupt.

SD80 ~ SD89: locating instruction parameters.

SM40 ~ SM68: interrupt control flag bit. Setting these SM elements will enable the corresponding interrupts. SM80/81: Y0/Y1 high speed pulse output stop instruction.

SM110 ~ SM114: monitor bit of free port 0

SM135/136: Modbus communication flag bit.

SM172 ~ SM178: integrated analog channel enabling flag (valid only for IVC1-1614MAR1)

Elements numbered in

Decimal, starting with 0

Data type

Boolean

Available forms

NO and NC contacts

Value assignment

1. Through instructions. 2. Write or force during system debugging.

SD100 ~ SD106: real time clock data.

Elements numbered in

Decimal, starting with 0

Data type

Word (integer)

Available forms

Storage and calculation of integers

Value assignment

1. Through instructions. 2. Write or force during system debugging.

Note

You cannot assign values to the read only SD elements.

3.1.11 Offset Addressing Register

Element mnemonic

Ζ

Function

The Z elements are 16-bit registers that can store signed integers. For detailed offset addressing information, see *3.2.2 Z Addressing* Mode (Offset Addressing Mode).

Elements numbered in

Decimal, starting with 0

3.1.12 Local Auxiliary Relay

Element mnemonic

LM

Function

The LM elements are local variants and can be used in the main program and subprograms. But being local variants, they are valid only in a certain program. Different programs cannot share the same LM element directly. When the system jumps from one program to another, the system will redefine the LM element. When the system returns to the main program or calls a subprogram, the redefined LM element will be cleared, or be set by the interface parameter transfer. The LM elements can be used to define the interface parameters of subprograms to realize interface parameter transfer. For details, see *4.4* Subprogram.

3.1.13 Local Data Register

Element mnemonic

V

Function

The V elements are local variants and can be used in the main program and subprograms. But being local variants, they are valid only in a certain program. Different programs cannot share the same V element directly. When the system jumps from one program to another, the system will redefine the V element. When the system returns to the main program or calls a subprogram, the redefined V element will be cleared, or be set by the interface parameter transfer. The V elements can be used to define the interface parameters of subprograms to realize interface parameter transfer. For details, see *4.4* Subprogram.

Data type

Word

Available forms

The Z elements are used for offset addressing. You need to write the addressing offset to the Z elements before you can use them.

Value assignment

1. Through instructions. 2, Write or force during system debugging.

Elements numbered in

Decimal, starting with 0

Data type

Boolean

Available forms

NO and NC contact

Value assignment

1. Through instructions. 2. Write or force during system debugging.

Elements numbered in

Decimal, starting with 0

Data type

Boolean

Available forms

Word, for numeric information

Value assignment

1. Through instructions. 2. Write or force during system debugging

3.2 Elements Addressing Mode

3.2.1 Kn Addressing Mode (Combined Bit-string Addressing Mode)

Concept

The Kn addressing mode, or combined bit-string addressing mode, realizes addressing by combining bit elements into words or double words.

Kn addressing method

The format is: "K (n) (U)", where the "n" is an integer from one to eight, standing for the length of the bit string: $n \times 4$. The "U" stands for the address of the starting element.

For example:

- 1. K1X0 stands for a word made up of (X0, X1, X2, X3).
- 2. K3Y0 stands for a word made up of (Y0, Y01, Y02, Y03), (Y04, Y05, Y06, Y07), (Y10, Y11, Y12, Y13).
- 3. K4M0 stands for a word made up of M0, M1, M2, M3..., M15.
- 4. K8M0 stands for a word made up of M0, M1, M2, M3..., M31.

Data storage using Kn addressing mode

The following is an example of how a specific data can be stored using the Kn addressing mode:

MOV 2#10001001 K2M0 (which is equal to MOV 16#89 K2M0, or MOV 137 K2M0). After executing the instruction, the result is:

	Highest bit							Lowest bit
K2M0	M7	M6	M5	M4	M3	M2	M1	MO
16#89	1	0	0	0	1	0	0	1

Points to note

If the destination operand uses the Kn addressing mode, while the data to be stored is longer than the length of the destination operand, the system will keep the lower bits and discard the higher bits.

For example:

Execute instruction DBITS 16# FFFFFF0 K1M0. After executing the instruction, the operand 2 (K1M0) should store the calculation result 16# 1c (28). However, the K1M0 is only 4 bits wide, which is not enough for 16# 1c. By discarding the higher bits, the actual operand 2 is K1M0 = 16# c (12).

3.2.2 Z Addressing Mode (Offset Addressing Mode)

Concept

The IVC2 series PLC provides the Z addressing mode, or offset addressing mode. You can use the Z elements (offset addressing register) to get indirect access to the targe elements.

Z addressing method

Targe address = Basic element address + Address offset stored in Z element

For example:

In the offset addressing mode, for D0Z0 (Z0 = 3), the target address is D3, because D0 is the basic address, and the offset address is stored in element Z0, which in this case, is 3.

Therefore when Z0 = 3, the instruction "MOV 45 D0Z0" is equal to "MOV 45 D3" in effect, because in both cases the D3 is set as 45 by the instruction.

Offset addressing example

2. Word element offset addressing example
LD M0 1
MOV 30 Z20
MOV D100Z20 D0
The preceeding instructions are in effect equal to:
LD M0 1
MOV D130 D0
The addressing process is as follows:
Z20=30
D100 Z20 = D (100+Z20) = D130

Points to note

1. The Z elements store the offset for the offset addressing. They support signed integers, which means minus offset is supported.

For example:

MOV -30 Z20

MOV D100Z20 D0

The preceeding instructions are equal to the following one in effect:

MOV D70 D0

2. The SM elements and SD elements do not support the Z addressing mode.

3. Pay attention to the address range when using the Z addressing mode. For example, D7999Z0 (Z0 = 9) is outside the address range of the D elements, which is not bigger than D7999.

3.2.3 Kn Addressing In Combination With Z Addressing

The Kn addressing mode can be used in combination with the Z addressing mode. For example: K1X0Z10. In this mode, the starting element address is found throught the Z addressing mode, then the Kn addressing mode is used to determine the length of the bit string.

For example:

```
LD M1
MOV 3 Z10
MOV K1X0Z10 D0
The preceeding instructions are in effect equal to:
LD M1
MOV K1X3 D0
The addressing process is as follows:
Z10 = 3
K1X0Z10=K1X (0+Z10) = K1X3
```

3.2.4 Storing & Addressing 32-Bit Data In D & V Elements

Storing 32-bit data in D and V elements

The DINT, DWORD and REAL data are all 32-bit, while the D and V elements are both 16-bit. Two consecutive D or V elements are needed to store the 32-bit data.

The IVC2 series PLC stores the 32-bit data in the Big Endian mode, which means the elements with smaller addresses are used to store the higher bits, while the elements with bigger addresses are used to store the lower bits.

For example, the signless integer "16# FEA8_67DA" is stored in the element (D0, D1). The actual storing format is:

D0	0xFEA8
D1	0x 67DA

Addressing 32-bit data in D and V elements

You can use a D or V element to locate a 16-bit data, such as an INT or WORD data, or a 32-bit data, such as a DINT or DWORD data.

If a D or V element address is used in an instruction, the operand data type determines whethther the data is 16-bit or 32-bit.

For example:

In the instruction "MOV 16#34 D0", the address D0 stands for a single D0 element, because operand 2 of the MOV instruction is of the WORD data type.

In the instruction "DMOV 16# FEA867DA D0", the address D0 stands for two consecutive words: D0 and D1, becase operand 2 of the DMOV instruction is of the DWORD data type.

3.3 Data

3.3.1 Data Type

All instruction operands are of a certain data type. There are altogether six data types, as listed in the following table:

Data type	Type description	Data width	Range			
BOOL	Bit	1	ON, OFF (1, 0)			
INT	Signed integer	16	-32768 ~ 32767			
	Signed double	32	-2147483648 ~ 2147483647			
DINT	integer	52				
WORD	Word	16	0 ~ 65535 (16#0 ~ 16#FFFF)			
DWORD	Double word	32	0 ~ 4294967295 (16#0 ~ 16#FFFFFFF)			
REAL	Floating point	32	±1.175494E-38 ~ ±3.402823E+38			

Table 3-2 Operand data types

3.3.2 Correlation Between Elements And Data Types

The elements used as instruction operands must have suitable data types. The correlations are listed in the following table.

Data type		Elements											
BOOL										С	Т		
DOOL	Х	Y	М	S	LM	SM							
INT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	D	SD	С	Т	V	Z
	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	D	SD	С		V	
Dint													
WORD	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	D	SD	С	Т	V	Z
WORLD													
	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	D	SD	С	Т	V	
DWORD													
REAL	Constant							D				V	

Table 3-3 Elements and data type correlations

If an instruction uses an operand with unsuitable data type, the instruction will be deemed illegal. For example, instruction "MOV 10 X0" is illegal because operand 2 of the MOV instruction is of signed integer data type, while the X0 element can store only Boolean data.

Note

- 1. When the operand is of INT or WORD type, the applicable elements include KnX, KnY, KnM, KnS, KnLM and KnSM, where $1 \le n \le 4$
- 2. When the operand is of DINT or DWORD type, the applicable elements include KnX, KnY, KnM, KnS, KnLM and KnSM, where $5 \le n \le 8$
- 3. When the operand is of INT or WORD type, the applicable C elements are $C0 \sim C199$.
- 4. When the operand is of DINT or DWORD type, the applicable C elements are $C200 \sim C255$.

3.3.3 Constant

You can use constants as the instruction operands. IVC2 series PLC supports input of multiple types of constants. The usual constant types are listed in the following table:

Constant type	Example	Valid range	Remarks
Decimal constant (16-bit signed integer)	-8949	-32768 ~ 32767	
Decimal constant (16-bit unsigned integer)	65326	0 ~ 65535	
Decimal constant (32-bit signed integer)	-2147483646	-2147483648 ~ 2147483647	
Decimal constant(32-bit unsigned integer)	4294967295	0 ~ 4294967295	
Hex constant (16-bit)	16#1FE9	16#0 ~ 16#FFFF	The base estal on binemy constants are
Hex constant (32-bit)	16#FD1EAFE9	16#0 ~ 16#FFFFFFF	ne nex, octal or binary constants are
Octal constant (16-bit)	8#7173	8#0 ~ 8#177777	themselves. When used as operands, the
Octal constant (32-bit)	8#71732	8#0 ~ 8#3777777777	positive and pogative nature of these
Binary constant (16-bit)	2#10111001	2#0 ~ 2#1111111111111111	constants are determined by the data
Binary constant (32-bit)	2#1011100111 11	2#0 ~ 2#11111111111111111 111111111111111111	type of the operand.
Single-precision floating point	-3.1415E-16 3.1415E+3 0.016	±1.175494E-38 ~ ±3.402823E+38	Compliant with IEEE-754. The programming software can display and input floating point constants with 7-bit of operational accuracy

Table 3-4 Constant types

Chapter 4 Programming Concepts

This chapter details the programming of IVC series small PLC, including the programming language, program components, data type, addressing mode and annotating function. The programming and usage of subprograms are also introduced, and finally, the general explanation of instructions.

4.1 Programming Language	45
4.1.1 LAD	45
4.1.2 IL	46
4.1.3 SFC	46
4.2 Program Components	47
4.2.1 User Program	47
4.2.2 System Block	47
4.2.3 Data Block	47
4.3 Block Comment And Variable Comment	47
4.3.1 Block Comment	47
4.3.2 Variable Comment	48
4.4 Subprogram	50
4.4.1 Concept	50
4.4.2 Points To Note For Using SBRs	50
4.4.3 SBR Local Variable Table	50
4.4.4 SBR Parameter Transfer	51
4.4.5 Example	51
4.5 General Information Of Instructions	52
4.5.1 Instruction Operands	52
4.5.2 Flag Bit	52
4.5.3 Limits To Instruction Usage	53

4.1 Programming Language

Three programming languages are provided: ladder diagram (LAD), instruction list (IL) and Sequential Function Chart (SFC).

4.1.1 LAD

Concepts

The LAD is a widely-used diagram programming-language, similar to the electric (relay) control diagram. It features: 1. Left bus, with right bus omitted.

2. All control output elements (coils) and functional blocks (application instructions) share the same power flow inlet. The electric control diagram and LAD are equivalent to a certain degree, as shown in the following figure.

Figure 4-1 The equivalence between electric control diagram and LAD

LAD basic programming components

According to the principles in electric control diagram, several basic programming components are abstracted for the LAD:

1. Left bus: Corresponding to the control bus in electric control diagram, it provides power for the control circuit.

2. Connecting line (- 1): Corresponding to the electric connection in electric control diagram, it connects different components.

3. Contact (H): Corresponding to the input contact in electric diagram, it controls the ON/OFF and direction of control currents. The parallel and serial connection of contacts stands for the logic calculation of inputs, determining the transfer of power flow.

4. Coil (...): It corresponds to the relay output in electric control diagram.

5. Function block (): Or application instruction. Corresponding to the execution unit or functional device that provides special functions in electric control diagram, it can accomplish specific control function or control calculation function (like data transmission, data calculation, timer and counter).

Power flow

Being an important concept in LAD, the power flow is used to drive coils and application instructions, which is similar to the control current output by the driving coil, and executed by the execution unit in electric control diagram.

In LAD, the coils or application instructions must be preceded with power flow, because the coils can output and instructions can be executed only when the power flow is ON.

The following figure demonstrates the power flow in LAD and the how the power flow drives coils or function blocks.

Figure 4-2 Power flow and its driving function

4.1.2 IL

The IL, or the instruction list composed by users, is a text programming language.

The user program stored in the PLC basic module is actually the instruction list recognizable to the basic module. The system realizes the control function by executing the instructions in the list one by one.

The following is an example of equivalent LAD and IL.

4.1.3 SFC

The SFC is a diagram programming-language usually used to realize sequence control, which is a control process that can be divided into multiple procedures and proceed according to certain working sequence.

The user program designed with SFC is direct and clear because it has a structure similar to the actual sequence control process.

See the following figure for a simple example of SFC.

Figure 4-3 Example of SFC

4.2 Program Components

The program components include user program, system block and data block. You can change these components by programming.

4.2.1 User Program

A user program is the program code composed by users. It must be compiled into executable instruction list, downloaded to the PLC and executed to realize the control function.

The user program comprises three Program Organization Units (POU): main program (MAIN), subprogram (SBR) and interrupt (INT).

Main program

The main program is the main body and framework of the user program. When the system is in RUN state, the main program will be executed cyclically.

One user program has only one main program.

Subprogram

A subprogram is a program independent in structure and function. It can be called by other POUs. Subprograms generally have call operand interface and are executed only when being called.

A user program can have random number of subprograms, or no subprogram at all.

Interrupt

An interrupt is a program section handling a specific interrupt event. A specific interrupt event always corresponds to a specific interrupt.

Upon the occurance of an interrupt event, a ordinary scan cycle will be interrupted. The system will run the corresponding interrupt until the interrupt is finished, when the system will return to the ordinary scan cycle. A user program can have random number of interrupts, or no interrupts at all.

4.2.2 System Block

The system block contains multiple system configuration parameters. You can modify, compile and download the system block to configure the operation mode of the basic module.

For details, see 2.2.1 System Block or the related description in AutoStation Programming Software User Manual.

4.2.3 Data Block

The data block contains the values of D elements. By downloading the data block to the PLC, you can set a batch of designated D elements.

If the **Datablock enabled** is checked in the **Advanced Settings** tab of **System block**, the D elements will be initialized by the data block before the PLC executes the user program.

4.3 Block Comment And Variable Comment

4.3.1 Block Comment

You can add comments to the program. Occupying a whole row, each piece of comment can be used to explain the function of the following program block.

In the program, right click and select **Insert Row** to insert a row above the current row. You can use a empty row to separate two program sections.

To make a block comment, just select an empty row, right click and select Insert Block Comment.

ariable addr. Variable Name	Variable Type	Date Type	Connente
	TERF	BDOL	
	202007	BOOL	
		1	2
Constant of the second s	area b		
unito (Unito	CM+Z		
Land Charles	CHORN P.		
X cit	Children		
A Statement	5446		
and prestation	Philipping and		
Select Al	CtriseA		
and production	C Parlater		
-	0000		
PBR	6225-670	141	
Insert Row	Ctri+L	1	
Dejete Row	Ctri+L		
Insert glock Comment	C61+8	12	
Proto- GFC Estimat		10	
Switch Insert/Overwrite 1	Mode Insert		
121 85	and the second second		

Figure 4-4 Adding block comment

Input your comment into the Block Comment dialogue box that pops out and click the OK button

Block Comment	X
Labeling procedures	OK Cancel

Figure 4-5 Block comment dialogue box

The comment will appear in the empty row, as shown below:

🗟 MAIN *	MAIN *							
Variable addr.	Variable Name	Variable Type	Data Type	Consents 🔺				
		TEMP	BOOL	-				
		TERP	BOOL	~				
4				>				
Habeling pro-	orduzen M			^				
(0)	H⊒ ⊣ ├──-{ 387	224]						
	#Z 500 >							
224 	">							
	.×s ⊣†⊢—— †⊢—	-[007 005	1					
22.3 	x1 ↓∕↓──〔 №17	nu]						
		-[387 300	1					
¢				>				

Figure 4-6 The block comment

A block comment occupies a whole row. You cannot add a block comment to an occupied row, nor can a row occupied by a comment be used for other purposes.

4.3.2 Variable Comment

You can define variables in the **Local variable table** and **Global variable table**. (See 2.2.3 *Global Variable Table* and 4.4.3 *SBR Local Variable Table*), and use them in the LAD programming language. A variable can stand for a certain address to make the program more sensible. Figure 4-7 shows some variables defined in a global variable table.

🕞 MAIN * 😰 Global variable table *							
	Variable Name	Variable addr.	Consents	^			
1	Forward jogging	3/2	Forward jog button	-			
2	Power-on.	5M1.					
3	Serve faulty	XL3	Serve ampl. faulty				
4	Stop button	>00	Stop button	×			

Figure 4-7 Variables defined in the global variable table

Symbol Addressing

When the defined variables are used, you can select <u>View -> Symbole Addressing</u> to display their names instead of their addresses in the LAD or IL program.

The following figure shows the LAD program when the Symbol Addressing is not checked.

Figure 4-8 When symbole addressing is unchecked

The following figure shows the LAD program when the Symbol Addressing is checked.

main *	4 b 🗙
Variable addr. Variable Name Variable Type Data Type Commer 4	itz -
Matempores Al annirolin war Tining along + + + + + + + + + + + + + + + + + + +	(1)
<	>

Figure 4-9 When symbole addressing is checked

Element comment

You can select <u>View -> Element Comment</u> to display the element comments in the LAD program, as shown in Figure 4-10.

ē	MAIN *								4	Þ	2
Va	riable	widz.	Variab	le Nume	Variable	Тура	Data	Туре	Comments		5
¢					_					×	
	Vatraga 		Timirag 	Al anni ird ainm 	11.0) 1.00						^
	(Alpen 1	the val	a 11 f	ha yool∜							
	Doard	1 6	2kog1 	-[187	Value Control V	1					~
<										>	

Figure 4-10 The LAD program displaying element comments

Note

The block comment, global variable table and local variable table can be compiled and downloaded to the IVC2 series PLC. To store such information, battery backup is needed. However, although battery failure may cause information loss, comment upload failure and user information file error report, the user program can still run normally.

4.4 Subprogram

4.4.1 Concept

Being an optional part of the user program, a subprogram (SBR) is an independent Program Organization Unit (POU) that can be called by the main program or other SBRs.

You can use SBRs in your user program to:

1. Reduce the size of the user program. You can write a repeated program section as a SBR and call it whenever necessary.

- 2. Clarify the program structure, particularly the structure of the main program.
- 3. Make the user program more transplantable.

4.4.2 Points To Note For Using SBRs

Note the following when writing or calling a SBR:

1. The PLC supports up to 6 levels of SBR nesting.

The following is an fine example of 6-level of SBR nesting:

 $MAIN \rightarrow SBR1 \rightarrow SBR2 \rightarrow SBR3 \rightarrow SBR4 \rightarrow SBR5 \rightarrow SBR6 \text{ (where the "}\rightarrow " represents calling with the CALL instruction)}$

2. The PLC does not support recursive calling and cyclic calling of SBRs.

The following two examples show two illegal SBR callings.

- MAIN→SBR0→SBR0 (recursive calling, illegal)
- MAIN→SBR0→SBR1→SBR0 (cyclic calling, illegal)
- 3. You can define up to 64 SBRs in a user program.
- 4. You can define up to 16 bit variables and 16 word variables in the local variable table of a SBR.

5. When calling a SBR, the operand type of the CALL instruction must match the variable type defined in the SBR local variable table. The compiler will check the match.

6. The interrupts are not allowed to call SBRs.

4.4.3 SBR Local Variable Table

Concept

The SBR local variable table displays all SBR interface parameters and local variables (both are called variables) and stipulates their properties.

SBR variable properties

The SBR variables (including interface parameters and local variables) have the following properties:

1. Variable address

Based on the variable data type, the software will automatically assign a fixed LM or V element address to each SBR variable in sequence.

2. Variable name

You can give each SBR variable a name (alias). You can use a variable in the program by quoting its name.

3. Variable type

The SBR variables are classified into the following four types:

- IN: The IN type variables can transfer the inputs of SBR when the SBR is being called.
- OUT: The OUT type variables can transfer the SBR execution result to the main program when a SBR calling ends.
- IN_OUT: The IN type variables can transfer the inputs of SBR when the SBR is being called, or transfer the the SBR execution result to the main program when a SBR calling ends.
- TEMP: The TEMP variables are local variables that are valid only within the SBR.

4. Data type

The variable data type specifies the range of the data. The variable data types are listed in the following table.

Table 4-1 Variable data types

Data type	Description	Occupid LM/V element address
BOOL	Bit type	One LM element address
INT	Signed integer type	One V element address
DINT	Signed double integer type	Two consecutive V element addresses
WORD	Word type	One V element address
DWORD	Double word type	Two consecutive V element addresses
REAL	Floating point type	Two consecutive V element addresses

4.4.4 SBR Parameter Transfer

If local input or output variables are defined in a SBR, when the main program calls the SBR, you should input the corresponding variable values, global variables or temporary variables into the SBR interface parameters. Note that the global variable should be of the same data type with the local variable.

4.4.5 Example

What follows is an example of how to write and call a SBR.

Function of this example SBR

Call SBR_1 in the main program to complete a adding calculation of two integer constants 3 and 2, and assign the result 5 to D0.

Operation procedures

Step 1: Insert a SBR into the project and name it as SBR_1.

Step 2: Write SBR_1.

1. Set the SBR calling interface through the SBR_1 variable table.

1) Variable 1: Name it as IN1 (variable type: IN). Set the data type as INT. The software will assign it with a V element address of V0.

2) Variable 2: Name it as IN2 (variable type: IN). Set the data type as INT. The software will assign it with a V element address of V1.

3) Variable 3: Name it as OUT1 (variable type: OUT). Set the data type as INT. The software will assign it with a V element address of V2.

2. Write the SBR_1 as:

LD SM0

ADD #IN1 #IN2 #OUT1

The above program is shown in the following figure.

Figure 4-11 Writing SBR_1

Step 3: Write the main program and call the SBR

Use the CALL instruction in the main program to call SBR_1.

The corresponding main program is as shown below:

- LD M0
- CALL SBR_1 3 2 D0

You can use the parameter transfer relationship table as shown in the following figure to set the parameters transferred to the subprogram and specify the element for storing the result of the subprogram.

- Parameter IN1 is used to transfer constant integer 3
- Parameter IN2 is used to transfer constant integer 2
- The result OUT1 is stored in D0

Project Manager # 34	11 MAIN * 12 59	R_1 *			
H AFCE	Variable addr.	Variable Nome	Variable Type	Data Type BOD1	Connesite
SR.1 SR.1 Dialad varialis tale Istaliade Syste Maak Syste Maak	Corroke Sede	2411 (194 <u>1</u> 1	9 E	80	
Elevent constraint to 200_11 Const equipment conse Configuration tabl	Subprogram	58R_1	×	į	
	Variable nam IMI JH2 DUTI	e Periskis addres 170 171 172	s varialis 1998 13 18 011	data typa impa 1017 3 1017 2 1017 10	rt salas coment
Brownert Mr. Director estimat				0	Cancel

Figure 4-12 Calling subprogram

Step 4: Compile, download and run the user program and check the correctness of the SBR logic.

Execution result

When M0 is ON, SBR_1 will be called. Values 2 and 3 are transferred to the operands IN1 and IN2 to carry out the calculation operation. The result 5 is then returned to the main program, and in the end, D0 is 5.

4.5 General Information Of Instructions

4.5.1 Instruction Operands

The instruction operands can be classified into the following two types:

- Source operands: or S (or S₁, S₂, S₃... when there are more than one of them in the same instruction). The instruction reads values from source operands for calculation.
- Destination operands: or D (or D₁, D₂, D₃... when there are more than one of them in the same instruction). The instruction controls or outputs values to the destination operands.

The operands could be bit elements, word elements, double-word elements, or constants. See the specific instruction description in *Chapter 5* or *Chapter 6* for details.

4.5.2 Flag Bit

The instruction result may affect three kinds of flag.

Zero flag SM180

The zero flag is set when the instruction operation result is zero.

Carry flag SM181

The carry flag is set when the instruction operation result is a carry.

Borrow flag SM182

The borrow flag is set when the instruction operation result is a borrow.

4.5.3 Limits To Instruction Usage

There are some limits to the usage of certain instructions. For details, see the description of the specific instruction.

Exclusive hardware resources

Some instructions requires hardware resources. When a specific hardware is being used by a certain instruction, the access to the hardware will be denied to other instructions, because the occupation of the resource is exclusive. Take the high speed I/O instructions and SPD instruction for example. Any of these instructions occupies a input point among X0 ~ X7. The limited resources will make it impossible to exeucte these instructions at the same time.

Exclusive time

The execution of certain instructions may take some time. During such period, the system will be too busy to execute other instructions.

Take the XMT instruction for example. Because of the time limit in communication, only one XMT instruction can be executed once. In the same way, the free port can execute only one RCV instruction once. Everytime when a Modbus instruction is being executed, the communication channel will be unavailable to other instructions for a while. The same is true to other instructions such as high speed output instruction, locating instructions and FREQUENCY CONVERTER instructions.

Application limit

Some instructions cannot be used in certain situations due to their limited application scope. For example, instruction pair MC/MCR cannot be used in the steps of SFC.

Chapter 5 Basic Instructions

This chapter details the basic instruction of IVC1 and IVC 20, including the instruction format (form), operand, influenced flag bit, function, example and sequence chart.

5.1 Contact Logic Instructions	55
5.1.1 LD: NO Contact Power-Flow Loading	
5.1.2 LDI: NC Contact Power-Flow Loading	
5.1.3 AND: NO Contact Power-Flow And	
5.1.4 ANI: NC Contact Power-Flow And	
5.1.5 OR: NO Contact Power-Flow Or	57
5.1.6 ORI: NC Contact Power-Flow Or	57
5.1.7 OUT: Power-Flow Output	
5.1.8 ANB: Power-Flow Block And	
5.1.9 ORB: Power-Flow Block Or	
5.1.10 MPS: Output Power-Flow Input Stack	
5.1.11 MRD: Read Output Power-Flow Stack Top Value	60
5.1.12 MPP: Output Power-Flow Stack Pop Off	60
5.1.13 EU: Power flow Rising Edge Detection	60
5.1.14 ED: Power flow Falling edge Detection	61
5.1.15 INV: Power-Flow Block Inverse	61
5.1.16 SET: Set	62
5.1.17 RST: Reset	62
5.1.18 NOP: No Operation	
5.2 Main Control Instruction	
5.2.1 MC: Main Contorl	
5.2.2 MCR: Main Control Remove	63
5.3 SFC Instructions	64
5.3.1 STL: SFC State Load Instruction	64
5.3.2 SET Sxx: SFC State Shift	64
5.3.3 OUT Sxx: SFC State Jump	64
5.3.4 RST Sxx: SFC State Reset	65
5.3.5 RET: SFC Program End	65
5.4 Timer Instruction	65
5.4.1 TON: On-Delay Timing Instruction	65
5.4.2 TONR: On-Delay Remember Timing Instruction	
5.4.3 TOF: Off-Delay Timing Instruction	
5.4.4 TMON: Monostable Timing Instruction	67
5.5 Counter Instruction	67
5.5.1 CTU: 16-Bit Counter Counting Up Instruction	67
5.5.2 CTR: 16-Bit Counter Loop Cycle Counting Instruction	68
5.5.3 DCNT: 32-Bit Counting Instruction	69

5.1 Contact Logic Instructions

5.1.1 LD: NO Contact Power-Flow Loading

LAD:										Applicable to IVC2 IVC1					
	μ			Influenced flag bit											
IL: LD	(S)								Progran	n steps	1				
Operand Type Applicable									lements						Offset addressing
S	S BOOL X Y M S LM SM										С	Т			

Operand description

S: Source operand

Function description

Connected to the left bus to connect (status: ON) or disconnect (status: OFF) the power flow.

Example

MO	YO	LD	M0
		OUT	Y0

When M0 is ON, Y0 is ON.

Note:

For the contact logic instructions of IVC1 series, when the operands are M1536 \sim M2047, the actual program steps will be the instruction program steps plus 1.

5.1.2 LDI: NC Contact Power-Flow Loading

										Applicable to IVC2 IVC1					
									Influenced flag bit						
IL: LDI	(S)								Progran	n steps	1				
Operand	Typo						Appli	abla c	lomonte						Offset
Operanu	arand Type Applicable Applicable														addressing
S	BOOL	Х	Y	М	S	LM	SM				С	Т			

Operand description

S: Source operand

Function description

Connected to the left bus to connect (status: OFF) or disconnect (status: ON) the power flow.

Example

Note:

For the contact logic instructions of IVC1 series, when the operands are M1536 \sim M2047, the actual program steps will be the instruction program steps plus 1.

5.1.3 AND: NO Contact Power-Flow And

Operand description

S: Source operand

Function description

Example

After conducting the "and" operation on the ON/OFF status of the designated contact (*S*) and the current power flow, assign the value to the current power flow.

When M0 is ON and M1 is ON, Y0 is ON.

5.1.4 ANI: NC Contact Power-Flow And

LAD:									Applicable to IVC2 IVC1						
									Influenced flag bit						
IL: ANI	(S)								Program	n steps	1				
Operand	Tuno						Applic		Iomonto						Offset
Operanu	erand Type Applicabl														addressing
S	BOOL	Х	Y	М	S	LM	SM				С	Т			

Operand description

S: Source operand

Function description

After reversing the ON/OFF status of the designated contact (*S*), conduct "and" operation on the reversed result and the current power flow, and then assign the value to the current power flow.

Example

When M0 is ON and M1 is OFF, Y0 outputs ON.

5.1.5 OR: NO Contact Power-Flow Or

LAD:									Applical	ble to	IV	/C2	VC1	
									Influenc	ed flag t	bit			
IL: OR	(S)								Program	n steps	1			
Operand		able el	e elements					Offset addressing						
S	BOOL	Х	Y	М	S	LM	SM				С	Т		

Operand description

S: Source operand

Function description

After conducting "OR" operation on the ON/OFF status of the designated contact (*S*) and the current power flow, assign the value to the current power flow.

Example

When M0 or M1 is ON, Y0 is ON.

5.1.6 ORI: NC Contact Power-Flow Or

Operand description

S: Source operand

Function description

After reversing the ON/OFF status of the designated contact (S), conduct "OR" operation on the reversed result and the current power flow, and then assign the value to the current power flow.

Example

When M1 is ON or M2 is OFF, Y0 is ON.

5.1.7 OUT: Power-Flow Output

Operand description

S: Source operand

Function description

Example

Μ1

Assign the value of the current power flow to the designated coil (**D**)

When M1 is ON, Y0 is ON.

YΟ

5.1.8 ANB: Power-Flow Block And

Operand description

S: Source operand

Function description

Conduct "and" operation on the power flow values of two power flow blocks, and then assign the value to the current power flow.

Example

When M0 or M1 is on, and M2 or M3 is ON, Y0 is ON.

5.1.9 ORB: Power-Flow Block Or

Operand description

Example

S: Source operand

Function description

Conduct "or" operation on the power flow values of two power flow blocks, and then assign the value to the current power flow.

_			LD	M1
	M1	M2	AND AND	M2
				M3
	MЗ	M4	AND	M4
	-+	——— I I——	J ORB	
			OUT	Y0

When both M1 and M2 are ON, or both M3 and M4 are ON, Y0 outputs ON.

5.1.10 MPS: Output Power-Flow Input Stack

Function description

Push the current power flow value into the stack for storage, so that it can be used in the power flow calculation for the subsequent output branches.

Note:

It is prohibited to use the MPS instruction consecutively for over 8 times in a LAD program (with no MPP instruction in between), otherwise the power flow output stack may overflow.

5.1.11 MRD: Read Output Power-Flow Stack Top Value

LAD:	Applicable to	IVC2 IVC1
	Influenced flag bit	
IL: MRD	Program steps	1

Function description

Assign the top value of the power flow output stack to the current power flow.

5.1.12 MPP: Output Power-Flow Stack Pop Off

Function description

Example

5.1.13 EU: Power flow Rising Edge Detection

LAD:	Applicable to	IVC2 IVC1
	Influenced flag bit	
IL: EU	Program steps	2

Function description

Compare the current power flow status with its previous status. If the power flow rises (OFF \rightarrow ON), the output is valid in the current scan cycle.

5.1.14 ED: Power flow Falling edge Detection

Function description

Compare the current power flow status with its previous status. If the power flow falls (OFF \rightarrow ON), the output is valid in the current scan cycle.

Example

1. In two consecutive scan cycles, the status of M2 contact is OFF and ON respectively. When the EU instruction detects a rising edge, Y2 will output ON status with the width of a scan cycle.

2. In two consecutive scan cycles, the status of M2 contact is ON and OFF respectively, when the ED instruction detects a trailing edge, Y3 will output ON status with the width of a scan cycle.

5.1.15 INV: Power-Flow Block Inverse

Note

In LAD program, the rising edge contact or falling edge contact instruction shall be used in series rather than in parallel connection with other contact elements.

In LAD program, the rising edge contact and falling edge contact instruction cannot directly connect to the left power flow bus.

The examples of improper use of EU/ED instructions in LAD program are shown as follows:

LAD:	Applicable to	IVC2 IVC1
	Influenced flag bit	
IL: INV	Program steps	1

Function description

Reverse the current power flow value and then assign to the current power flow.

Note:

In LAD program, the INV instruction shall be used in series rather than in parallel connection with contacts.

INV cannot be used as the first instruction in the input parallel branch.

In LAD program, the INV instruction cannot directly connect to the left power flow bus.

The examples of improper use of INV instructions in LAD program are shown as follows:

5.1.16 SET: Set

LAD:	LAD:									Applicable to IVC2 I			′C1	
$ \qquad \qquad$									Influenced flag bit					
IL: SET (S	S)								Program	ı steps	1			
Operand	Туре		Applicable elements											Offset addressing
S	BOOL		Y	М	S	LM	SM				С	Т		
					•							•		-

Example

MO

Operand description

S: Source operand

Function description

When the power flow is valid, the bit element designated by **D** will be set.

5.1.17 RST: Reset

LAD:								Applica	ble to	I	VC2	IV	C1	
- arter	all a	- Althour			Influenc	ed flag	bit							
IL: RST (S	S)						Progran	n steps	1					
Operand	Туре					Applic	able ele	ements						Offset addressing
S I	BOOL		LM				С	-	Г		uuuioooing			

Operand description S: Source operand

Function description

Example

MO		OFF		LD M0
	RST	M1]	RST M1

<mark>on</mark> M1

]

SET

LD M0

SET M1

When the power flow is valid, the designated bit element (D) will be reset

Note

If D is C element, the corresponding count value will be reset; if D is T element, the corresponding timing value will be reset.

5.1.18 NOP: No Operation

LAD:	Applicable to	IVC2 IVC1
	Influenced flag bit	
IL: NOP	Program steps	1

Function description

Note

This instruction does not enable any action.

In LAD program, this instruction cannot directly connect to the left power flow bus.

5.2 Main Control Instruction

5.2.1 MC: Main Contorl

LAD:							4	Applica	ble to	IV	C2 IV	C1	
		(MC (S))			Ī	nfluenc	ed flag	bit					
IL: MC (S)						Progran	n steps	3					
Operand	Type					Applic	مام مام	monte					Offset
Operand	Operand Type Applicat												addressing
S	INT	Constant											

Operand description

S: Source operand

5.2.2 MCR: Main Control Remove

LAD:								Applica	ble to	IV	C2 IV	'C1	
	[MCR (S)]			Influenc	ed flag	bit						
IL: MCR (Progran	n steps	1									
Operand Type Applicable													Offset addressing
S	INT	Constant											

Operand description

S: Source operand

Function description

1. MC and MCR form a MC-MCR structure. The MC instruction indicates the beginning a MC-MCR structure, and its operand S is the SN of the MC-MCR structure. The value of S is a constant ranging from 0 to 7. MCR indicates the end of the MC-MCR structure.

2. When the power flow before the MC instruction is valid, the instructions in the MC-MCR structure will be executed.

3. When the power flow before the MC instruction is invalid, the program will skip over the instructions in the MC-MCR structure and execute the instructions after the structure. Besides, the destination operands of instructions OUT, TON, TOF, PWM, HCNT, PLSY, PLSR, DHSCS, SPD, DHSCI, DHSCR, DHSZ, DHST, DHSP and BOUT in the structure will be cleared.

Example

When M0 = ON, the instructions in the MC 0 - MCR 0 structure will be executed, and Y0 = ON. When M0 = OFF, the instructions in the MC 0 - MCR 0 structure will not be executed, and the bit element Y0 designated by the designation operand of the OUT instruction in the structure will be cleared, Y0 = OFF.

Note

 In LAD program, the MCR instruction must directly connect to the left power flow bus.
 In LAD program, the MCR instruction cannot connect to other instructions.

3. Several MC-MCR structures of different SNs can be used through the nest structure, but the number of nest levels cannot exceed 7. The MC-MCR structures with the same SN cannot be used in the nest structure.

4. Crossing of two MC-MCR structures is not allowed. The following is an illegal example.

Note: It cannot be used in SFC programming.

5.3 SFC Instructions

5.3.1 STL: SFC State Load Instruction

LAD:									Applical	ble to	IV	C2 IV	C1	
									Influenc	ed flag	bit			
IL: STL (S)									Program	1 steps	3			
Operand	Type						Applic	abla ala	monte					Offset
Operanu	operand Type Applical								mento					addressing
S BOOL S														

Operand description

S : Source operand

Function description

1. It indicates the beginning of a step (S).

2. If a step is valid (ON), its embedded instructions will be executed.

3. If a step changes from ON to OFF (trailing edge), the embedded instructions will not be executed, and the destination operands of the embedded

instructions such as OUT, TON, TOF, PWM, HCNT, PLSY, PLSR, DHSCS, SPD, DHSCI, DHSCR, DHSZ, DHST, DHSP and BOUT will be cleared.4. If a step is invalid (OFF), the embedded instructions will not be executed.

5. Consecutive STL instructions (serial connection of S elements) define a parallel merge structure. The STL instructions can be used up to 16 times in a row (the maximum number of branches of a parallel branch structure is 16).

5.3.2 SET Sxx: SFC State Shift

LAD:									Applica	ble to	IN	/C2 \	/C1	
	<i>(1)</i>	())	$+ \vdash -$				Influenc	ed flag	bit					
IL: SET	IL: SET (D)								Progran	n steps	3			
Operand							Applic	ام مامد	omonte					Offset
Operand	туре						Applic		emento					addressing
D	BOOL		S											

Operand description

D: Destination operand

Function description

When the power flow is valid, the designated step (D) will be set valid, and the current valid step will be set invalid, to complete the step transition.

5.3.3 OUT Sxx: SFC State Jump

LAD:									Applica	ble to	IV	C2 IV	'C1	
HAR HAR									Influenc	ed flag	bit			
IL: OUT <i>(D)</i>									Progran	n steps	3			
Operand Type							Applic	able el	ements					Offset addressing
D BOOL S														

Operand description

D: Destination operand

Function description

When the power flow is valid, the designated step (D) will be set valid, and the current valid step will be set invalid, to complete the step jump.

5.3.4 RST Sxx: SFC State Reset

LAD:									Applica	ble to	IV	′C2	IVC1	
$ \vdash $	$ \begin{array}{c} & & \\ & & $									ed flag	bit			
IL: RST <i>(D)</i>									Progran	n steps	3			
Operand	Dperand Type Applicable								ements					Offset addressing
D	D BOOL S													

Operand description

D: Destination operand

Function description

When the current power flow is valid, the designated step (*D*) will be set invalid.

5.3.5 RET: SFC Program End

LAD:	Applicable to	IVC2 IVC1
E RET]	Influenced flag bit	
IL: RET	Program steps	1

Function description

It indicates the end of a SFC program section.

Note

It can only be used in the main program.

5.4 Timer Instruction

5.4.1 TON: On-Delay Timing Instruction

LAD:									Applica	ble to	IV	C2 IV	C1		
and the second	a Calendar	Constant -	فتعبر أأ	67.60°	and the second				Influenc	ed flag	bit				
IL: TON	(D)	(S)				Progran	n steps	5							
Operand	Type			ahla al	omente						Offset				
operand	турс						Аррію		Smerno	nts O addu					
D INT												Т			
S INT Constant KnX KnY KnM KnS KnLM K									D	SD	С	Т	V	Z	\checkmark

Operand description

D: Destination operand

S: Source operand

Function description

1. When the power flow is valid, and the timing value < 32,767, the designated T element (**D**) will start timing (the value will increase with the lapse of time). When the timing value reaches 32,767, it will maintain at 32,767.

2. When the timing value \geq the preset value (**S**), the timing coil output of the designated T element will be ON.

3. When the power flow is OFF, the timing will stop, the timing value will be cleared, and the timing coil output will be OFF.

4. When the system executes the instruction for the first time, it will reset the timing coil of the designated T element, and clear the timing value.

Example

Time sequence chart

5.4.2 TONR: On-Delay Remember Timing Instruction

LAD:								1	Applical	ole to	IV	C2 IV	C1		
*//	_0 0/4	W Job	47	10	12207 _	Het.		I	nfluenc	ed flag	bit				
IL: TONF	r (D)	(S)							Program steps 5						
IL: TONR (D) (S) Operand Type Appl D INT Int							Applic	able ele	ements						Offset addressing
D	INT											Т			
S INT Constant KnX KnY KnM KnS KnLM K								KnSM	D	SD	С	Т	V	Z	\checkmark

Operand description

D: Destination operand

S: Source operand

Function description

1. When the power flow is valid, and the timing value <32,767, the designated T element (D) start timing (the value will increase with the lapse of time). When the timing value reaches 32,767, it will maintain at 32,767. 2. When the timing value \geq the preset value (S), the

timing coil output of the designated T element will be ON.

3. When the power flow is OFF, the timing will stop, the timing coil and the timing value will maintain the current value.

Time sequence chart

5.4.3 TOF: Off-Delay Timing Instruction

LAD:							Applicable to			C2 IV						
24-1 1									Influenced flag bit							
IL: TOF (D) (S)										n steps	5					
Operand	Type						Applic	ahle ele	mente		Offset					
operand															addressing	
D	INT											Т				
S	INT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	D	SD	С	Т	V	Z	\checkmark	

Operand description

D: destination operand

S: Source operand

Function description

1. When the power flow changes from ON to OFF

(trailing edge), the designated timer T (D) will start timing. 2. When the power flow is OFF, if the designated timer T has started timing, it will keep timing until the timing value reaches the preset value (S). The timing coil output of the T element will be OFF, and the timing value will maintain at the preset value.

3. When the power flow input is OFF, if the timing has not started, the timing will not start.

4. When the power flow is ON, the timing will stop, the timing value will be cleared, and the timing coil output is ON.

Example

Sequence chart of example

5.4.4 TMON: Monostable Timing Instruction

LAD:								4	Applicable to IVC2 IVC1						
(<i>⊕</i>) [5) 1MON] (<i>⊕</i>) [5) TMON]								1	Influenced flag bit						
IL: TMO	IL: TMON (D) (S)									1 steps	5				
Operand	Type						Applic	abla alc	monte						Offset
Operanu	perand Type Applicable elements													addressing	
D	INT											Т			
S	INT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	D	SD	С	Т	V	Z	\checkmark

Operand description

D: Destination operand

S: Source operand

Function description

1. When the input power flow changes from OFF to ON (rising edge), and the timing has not started, the designated timer T (**D**) will start timing based on the current value. In the timing status (whose length is determined by **S**), the timing coil output will maintain ON.

2. In the timing status (whose length is determined by **S**), no matter how the power flow changes, the timing will keep going, and the timing coil output will keep ON.

3. When the timing value reaches the preset point, the timing will stop, the timing value will be cleared, and the timing coil output will be set OFF.

5.5 Counter Instruction

5.5.1 CTU: 16-Bit Counter Counting Up Instruction

LAD:						Applicable to			C2 IV							
and the second states of the second states									Influenced flag bit							
IL: CTU (D) (S)									Progran	n steps	5					
Operand	Туре		Applicable elements													
D	INT											С				
S	INT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	D	SD	С	Т	V	Z	\checkmark	

Operand description

D: destination operand

S: Source operand

Function description

1. When the power flow changes from OFF to ON (rising edge), the 16-bit counter C (D) will count 1.

2. When the counting value reaches 32,767, it will maintain that value.

3. When the counting value is larger than or equal to the preset point (**S**), the counting coil will be set ON.

Note

The address range of the 16-bit counter C (D): C0 ~ C199.

Example

Time sequence chart

Example

Sequence chart of example

5.5.2 CTR: 16-Bit Counter Loop Cycle Counting Instruction

LAD:										Applicable to			IVC2 IVC1				
									Influenced flag bit								
IL: CTR (D) (S)										n steps	5						
Operand	Type						Applic	ahla al	ements		Offset						
operand	Applicable (addressing		
D	INT											С					
S	INT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	D	SD	С	Т	V	Z	\checkmark		

Operand description

D: destination operand

S: Source operand

Function description

1. When the power flow changes from OFF to ON (rising edge), the 16-bit counter C (D) will count 1.

2. When the counting value is equal to the preset point (*S*), the counting coil will be set ON.

3. After the counting value reaches the preset point (**S**), if the power flow changes from OFF to ON again (rising edge), the counting value will be set to 1, and the counting coil will be set OFF.

Note

1. When the preset counting value (**S**) is less than or equal to 0, there will be no counting.

2. The address of the 16-bit counter C (D) shall be within C0 ~ C199.

Example

Time sequence chart

5.5.3 DCNT: 32-Bit Counting Instruction

LAD:										Applicable to			IVC2 IVC1			
₩ – (S) DONT J # – (S) DONT]										Influenced flag bit						
IL: DCNT (D) (S)									Progran	n steps	7					
Operand	Type						Applic	ام مامد	omonte						Offset	
Operand	туре						Applic		emento						addressing	
D	DINT											С				
S	DINT	Constant	Constant KnX KnY KnM KnS KnLM KnS							SD	С	Т	V	Z	\checkmark	

Operand description

D: destination operand

S: Source operand

Function description

1. When the input power flow changes from OFF to ON (rising edge), the 32-bit counter C (*D*) will count up or down 1 (depending on the corresponding SM flag bit).

2. For a up counter, when the counting value is larger than or equal to the preset point (*S*), the counting coil will be set ON.

3. For a down counter, when the counting value is less than or equal to the preset point (*S*), the counting coil will be set OFF.

4. When the counting value is 2147483647, it will change to -2147483648 if the counter counts up once more.

5. When the counting value is -2147483648, it will change to 2147483647 if the counter counts down once more.

Note

The address of the C element (D) shall be within C200 ~ C235.

Example

Time sequence chart

Chapter 6 Application Instructions

This chapter introduces the application instructions of IVC series small PLC, including the formats, o	operands,
influenced flag bit, functions, examples and time sequence charts of the instructions.	
6.1 Program Flow Control Instruction	75
6.1.1 FOR: Cycle Instruction	75
6.1.2 NEXT: Return From Cycle	75
6.1.3 LBL: Jump Label Definition	76
6.1.4 CJ: Conditional Jump	77
6.1.5 CFEND: Conditional End From User Main Program	77
6.1.6 WDT: User Program Watchdog Reset	78
6.1.7 EI: Enable Interrupt Instruction	78
6.1.8 DI: Disable Interrupt Instruction	78
6.1.9 CIRET: Conditional Return From User Interrupt Subprogram	78
6.1.10 STOP: User Program Stop	78
6.1.11 CALL: Calling A Subprogram	79
6.1.12 CSRET: Conditional Return From User Subprogram	79
6.2 Data Transmission Instruction	80
6.2.1 MOV: Move Word Data Transmission Instruction	80
6.2.2 DMOV: Move Double Word Data Transmission Instruction	80
6.2.3 RMOV: Move Floating Point Number Data Transmission	81
6.2.4 BMOV: Move Data Block Transmission Instruction	81
6.2.5 FMOV: Fill Data Block Instruction	82
6.2.6 DFMOV: Fill Data Block Double Word Instruction	82
6.2.7 SWAP: Swap Bytes	83
6.2.8 XCH: Exchange Word	83
6.2.9 DXCH: Exchange Double Word Instruction	84
6.2.10 PUSH: Push Instruction	84
6.2.11 FIFO: First-In-First-Out Instruction	85
6.2.12 LIFO: Last-In-First-Out Instruction	86
6.2.13 WSFR: Shift Right Word Instruction	87
6.2.14 WSFL: Shift Left Word Instruction	
6.3 Integer Math Instructions	
6.3.1 ADD: Add Integer Instruction	
6.3.2 SUB: Subtract Integer Instruction	
6.3.3 MUL: Multiply Integer Instruction	90
6.3.4 DIV: Divide Integer Instruction	90
6.3.5 SQT: Square Root Integer Instructions	91
6.3.6 INC: Increment Integer Instruction	91
6.3.7 DEC: Decrement Integer Instruction	92
6.3.8 VABS: Integer Absolute Value Instruction	92
6.3.9 NEG: Negative Integer Instruction	93
6.3.10 DADD: Add Double Integer Instruction	93
6.3.11 DSUB: Subtract Double Integer Instruction	94
6.3.12 DMUL: Multiply Double Integer Instruction	94
6.3.13 DDIV: Divide Double Integer Instruction	95
6.3.14 DSQT: Square Root Double Integer Instruction	95
6.3.15 DINC: Increment Double Integer Instruction	

6.3.16 DDEC: Decrement Double Integer Instruction	
6.3.17 DVABS: Double Integer Absolute Value Instruction	
6.3.18 DNEG: Negative Double Integer Instruction	
6.3.19 SUM: Sum Integer Instruction	
6.3.20 DSUM: Sum Double Integer Instruction	
6.4 Floating-Point Number Math Instruction	
6.4.1 RADD: Add Floating Point Number Instruction	
6.4.2 RSUB: Subtract Floating Point Number Instruction	
6.4.3 RMUL: Multiply Floating Point Number Instruction	
6.4.4 RDIV: Divide Floating Point Number Instruction	
6.4.5 RSQT: Square Root Floating Point Number Instruction	
6.4.6 RVABS: Floating Point Number Absolute Value Instruction	
6.4.7 RNEG: Negative Floating Point Number Instruction	
6.4.8 SIN: Floating Point Number Sin Instruction	
6.4.9 COS: Floating Point Number COS Instruction	
6.4.10 TAN: Floating Point Number TAN Instruction	
6.4.11 POWER: Floating Point Number Exponentiation Instruction	
6.4.12 LN: Floating Point Number LN Instruction	
6.4.13 EXP: Floating Point Number EXP Instruction	
6.4.14 RSUM: Sum Floating Point Number Instruction	
6.5 Data Converting Instruction	
6.5.1 DTI: Double Integer To Integer Instruction	
6.5.2 ITD: Integer To Double Integer Instruction	
6.5.3 FLT: Integer To Floating Point Number Instruction	
6.5.4 DFLT: Double Integer To Floating Point Number Instruction	
6.5.5 INT: Floating Point Number To Integer Instruction	
6.5.6 DINT: Floating Point Number To Double Integer Instruction	
6.5.7 BCD: Word To 16-Bit BCD Instruction	
6.5.8 DBCD: Double Word To 32-Bit BCD Instruction	
6.5.9 BIN: 16-Bit BCD To Word Instruction	
6.5.10 DBIN: 32-Bit BCD To Double Word Instruction	
6.5.11 GRY: Word To 16-bit Gray Code Instruction	111
6.5.12 DGRY: Double Word To 32-Bit Gray Code Instruction	111
6.5.13 GBIN: 16-Bit Gray Code To Word Instruction	
6.5.14 DGBIN: 32-Bit Gray Code To Double Word Instruction	
6.5.15 SEGI: Word To 7-Segment Encode	
6.5.16 ASC: ASCII Code Conversion Instruction	
6.5.17 ITA: Hexadecimal Integer-ASCII Conversion Instruction	
6.5.18 ATI: ASCII-Hexadecimal Integer Conversion Instruction	
6.6 Word Logic Operation	
6.6.1 WAND: AND Word Instruction	
6.6.2 WOR: OR Word Instruction	
6.6.3 WXOR: Exclusive-OR Word Instruction	
6.6.4 WINV: NOT Word Instruction	
6.6.5 DWAND: AND Double Word Instruction	
6.6.6 DWOR: OR Double Word Instruction	
6.6.7 DWXOR: Exclusive-OR Double Word Instruction	
6.6.8 DWINV: NOT Double Word Instruction	
6.7 Shift / Rotate Instruction	
6.7.1 ROR: 16-Bit Circular Shift Right Instruction	119
-	

6.7.2 ROL: 16-Bit Circular Shift Left Instruction	120
6.7.3 RCR: 16-Bit Carry Circular Shift Right Instruction	
6.7.4 RCL: 16-Bit Carry Circular Shift Left Instruction	122
6.7.5 DROR: 32-Bit Circular Shift Right Instruction	122
6.7.6 DROL: 32-Bit Circular Shift Left Instruction	
6.7.7 DRCR: 32-Bit Carry Circular Shift Right Instruction	123
6.7.8 DRCL: 32-Bit Carry Circular Shift Left Instruction	
6.7.9 SHR: 16-Bit Shift Right Word Instruction	
6.7.10 SHL: 16-Bit Shift Left Instruction	
6.7.11 DSHR: 32-Bit Shift Right Instruction	125
6.7.12 DSHL: 32-Bit Shift Left Instruction	126
6.7.13 SFTR: Shift Right Byte Instruction	
6.7.14 SFTL: Shift Left Byte Instruction	
6.8 External Equipment Instruction	129
6.8.1 FROM: Read Word Form Special Module Buffer Register Instruction	129
6.8.2 DFROM: Read Double Word Form Special Module Buffer Register Instruction	130
6.8.3 TO: Write Word To Special Module Buffer Register Instruction	
6.8.4 DTO: Write Double Word To Special Module Buffer Register Instruction	
6.8.5 VRRD: Read Analog Potentiometer Value Instruction	
6.8.6 REFF: Set Input Filtering Constant Instruction	
6.8.7 REF: Instant Refresh I/O Instruction	
6.8.8 EROMWR: EEPROM Write Instruction	
6.9 Real-Time Clock Instruction	
6.9.1 TRD: Read Real-Time Clock Instruction	
6.9.2 TWR: Write Real-Time Clock Instruction	
6.9.3 TADD: Add Clock Instruction	
6.9.4 TSUB: Subtract Clock Instruction.	
6.9.5 HOUR: Timing List Instruction	
6.9.6 DCMP: Compare Date (=, <, >, <>, >=, <=) Instruction	
6.9.7 TCMP: Compare Time (=, <, >, <>, >=, <=) Instruction	
6.10 High-speed I/O Instruction	
6 10 1 HCNT: High-speed Counter Drive Instruction	142
6 10 2 DHSCS: High-speed Counting Compare Set Instruction	143
6 10 3 DHSCI: High-speed Counting Compare Interrupt Trigger Instruction	144
6.10.4 DHSCR: High-speed Counting Compare Reset Instruction	145
6 10 5 DHSZ. High-speed Counting Zone Compare Instruction	146
6 10 6 DHST: High-speed Counting Table Compare Instruction	
6 10 7 DHSP: High-speed Counting Table Compare Pulse Output Instruction	149
6 10 8 SPD: Pulse Detection Instruction	151
6 10 9 PLSY: Count Pulse Output Instruction	152
6 10 10 PLSR: Count Pulse With Acceleration/Deceleration Output Instruction	153
6 10 11 PLS: Pulse Output Instruction of Envelope	155
6 10 12 PWM [·] Pulse Output Instruction	156
6.11 Control Calculation Instruction	157
6.11.1 PID: PID Instruction	
6 11 2 RAMP [·] Ramp Wave Signal Output Instruction	160
6.11.3 HACKI F: Hackle Wave Signal Output Instruction	
6 11 4 TRIANGI E: Triangle Wave Signal Output Instruction	167
6 12 Communication Instruction	
6.12.1 Modbus: Modbus Master Station Communication Instruction	
ט. וב. ד ואוטעטעט. ואוטעטעט ואומטנכו סנמנוטוד כטוזווזוערוונימנוטוד ווזטנוענוטוד	

6.12.2 IVFWD: FREQUENCY CONVERTER Forward Rotation Instruction	
6.12.3 IVREV: FREQUENCY CONVERTER Reverse Rotation Instruction	
6.12.4 IVDFWD: FREQUENCY CONVERTER Touch Forward Rotation Instruction	
6.12.5 IVDREV: FREQUENCY CONVERTER Touch Reverse Rotation Instruction	167
6.12.6 IVSTOP: FREQUENCY CONVERTER Stop Instruction	167
6.12.7 IVFRQ: FREQUENCY CONVERTER Set Frequency Instruction	
6.12.8 IVWRT: FREQUENCY CONVERTER Write Single Register Value Instruction	
6.12.9 IVRDST: FREQUENCY CONVERTER Read Status Instruction	170
6.12.10 IVRD: FREQUENCY CONVERTER Read Single Register Value Instruction	171
6.12.11 XMT: Free-Port Sending (XMT) Instruction	172
6.12.12 RCV: Free-Port Receiving (RCV) Instruction	173
6.13 Data Check Instruction	174
6.13.1 CCITT: Check Instruction	174
6.13.2 CRC16: Check Instruction	175
6.13.3 LRC: Check Instruction	176
6.14 Enhanced Bit Processing Instruction	177
6.14.1 ZRST: Batch Bit Reset Instruction	177
6.14.2 ZSET: Set Batch Bit Instruction	177
6.14.3 DECO: Decode Instruction	178
6.14.4 ENCO: Encode Instruction	178
6.14.5 BITS: Counting ON Bit In Word Instruction	179
6.14.6 DBITS: Counting ON Bit In Double Word Instruction	179
6.15 Word Contactor Instruction	180
6.15.1 BLD: Word Bit Contactor LD Instruction	180
6.15.2 BLDI: Word Bit Contactor LDI Instruction	180
6.15.3 BAND: Word Bit Contactor AND Instruction	181
6.15.4 BANI: Word Bit Contactor AND Instruction	181
6.15.5 BOR: Word Bit Contactor OR Instruction	182
6.15.6 BORI: Word Bit Contactor ORI Instruction	
6.15.7 BOUT: Word Bit Coil Output Instruction	183
6.15.8 BSET: Word Bit Coil Set Instruction	183
6.15.9 BRST: Word Bit Coil Reset Instruction	183
6.16 Compare Contactor Instrucitons	184
6.16.1 Compare Integer LD (=, <, >, <>, >=, <=) Instrucitons	
6.16.2 Compare Integer AND (=, <, >, <>, >=, <=) Instruction	185
6.16.3 Compare Integer OR (=, <, >, <>, >=, <=) Instruction	
6.16.4 Compare Double Integer LDD (=, <, >, <>, >=, <=) Instruction	
6.16.5 Compare Double Integer ANDD (=, <, >, <>, >=, <=) Instruction	
6.16.6 Compare Double Integer ORD (=, <, >, <>, >=, <=) Instruction	
6.16.7 Compare Floating Point Number LDR Instruction	
6.16.8 Compare Floating Point Number ANDR Instruction	
6.16.9 Compare Floating Point Number ORR Instruction	
6.17 Locating Instructions	
6.17.1 Setting Up An Absolute Position System	
6.17.2 Overview Of Locating Instructions For IVC Series PLC	
6.17.3 Mechanical Diagram Of Absolute Position System	
6.17.4 POINTS TO NOTE FOR USING LOCATING INSTRUCTIONS ZRN, PLSV, DRVI AND DRVA	
6.17.5 Notes Un Servo Amplitiers.	
0.17.0 Special Elements Related 10 Locating Instructions	

6.17.8 PLSV: Variable Speed Pulse Output Instruction	. 197
6.17.9 DRVI: Relative Position Control Instruction	. 198
6.17.10 DRVA: Control Absolute Position Instruction	.199
6.17.11 ABS: Read Current Value Instruction	. 199
6.17.12 Application Examples	201

6.1 Program Flow Control Instruction

6.1.1 FOR: Cycle Instruction

LAD:										ble to	C1				
The second s									Influenc						
IL: FOR (S)									Program steps 3						
Operand Type Applicable e								able ele	ements						Offset addressing
S	INT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	D	SD	С	Т	V	Z	\checkmark

Operand description

S: Source operand

6.1.2 NEXT: Return From Cycle

LAD:	Applicable to	IVC2 IVC1
[NEXT]	Influenced flag bit	
IL: NEXT	Program steps	1

Function description

1. Instructions FOR and NEXT form a FOR-NEXT structure.

2. When the power flow before FOR is valid, and the cycle times (S) is larger than 0, the instructions in the FOR-NEXT structure will be cyclically executed S times. After that, the instructions after the FOR-NEXT structure will be executed.

3. If the power flow before FOR is invalid, or the cycle times (*S*) is less than or equal to 0, the program will skip over the instructions in the FOR-NEXT structure and execute the following instructions.

Example

The initial conditions for the operation are: D0=0, M2=OFF. When M2 changes from OFF to ON, the instructions in the FOR-NEXT structure will be consecutively executed for 100 times. D0 will increase one for each cycle. When the cycle is over, D0 reaches 100.

Note

1. The FOR-NEXT instruction must be used in pairs in a POU, or the program cannot pass the compiling.

2. Nesting of several FOR-NEXT structures is supported. IVC2 series PLC supports up to 8 levels of nesting. (The figure below shows a 3-level nesting of FOR-NEXT structure)

3. You can use the Conditional Jump (CJ) instruction to jump out of the structure and end the loop in advance, as shown in the following ladder diagram:

4. It is prohibited to use the CJ instruction to jump into a loop. The LAD program shown in the following figure cannot pass the compiling.

5. The crossing of the structures MC-MCR and FOR-NEXT is prohibited. LAD program shown in the following figure cannot pass the compiling.

Note

The execution of the FOR-NEXT structure is time consuming. The bigger the cycle times is, or the more instructions are contained in the loop, the longer it will take. To prevent the operation overtime error, use the WDT instruction in a time-consuming loop.

6.1.3 LBL: Jump Label Definition

LAD:								Applicable to IVC2 IVC1						
E LBL	(S)]	I	Influenced flag bit										
IL: LBL	(S)						I	Progran	n steps	3				
Operand	Typo					Applic	sable ele	monte						Offset
Operanu	Type					Applic		inents						addressing
S	INT	Constant												

Operand description

S: label number. Range: $0 \le S \le 127$

Function description

1. A label numbered **S** is defined.

2. It is used to mark a specific jumping position for the CJ instruction.

Note

Take care not to mark two labels with the same No. in one POU, or the program cannot pass the compiling. However, you can do so in different POUs (for example, different sub-programs).

Example of error program

6.1.4 CJ: Conditional Jump

LAD:									Applicable to IVC2 IVC						
									Influenced flag bit						
IL: CJ	(S)	S) Program steps 3													
Operand	Type						Applic	عام ماد	monte						Offset
Operanu	туре									, clements					
S	INT	Constant													

Operand description

S: label SN

Function description

1. When the power flow is valid, the program will jump to execute the instruction numbered **S**.

2. If the power flow is invalid, the program will not jump, but execute the instruction following CJ.

Note

1. The jumping label **S** ($0 \le S \le 127$) for the CJ instruction shall be a legal and defined label. Otherwise, the user program cannot pass the compiling.

2. It is not allowed to use the CJ instruction to jump into a FOR-NEXT structure.

3. It is allowable to use the CJ instruction to jump out of or into the MC-MCR structure or SFC status. However, such operation will damage the logic of the MC-MCR structure or SFC status and make the program complex. It is not recommended to do this.

Example

1. Initial conditions: M0=OFF, M1=ON. The CJ instruction is not be executed, and D0 is 100. After executing CFEND, the current cycle of the main program ends in advance, and the following LD and MOV instructions are not executed.

2. When M0 is ON, M1=ON, the program will execute the CJ instruction, skip over the "MOV 100 200" and CFEND instructions, and jump to LBL 0 and execute "MOV 200 D0" instruction. D0 is 200 then.

6.1.5 CFEND: Conditional End From User Main Program

LAD:	Applicable to	IVC2 IVC1
Charles and the second s	Influenced flag bit	
IL: CFEND	Program steps	1

Function description

1. When the power flow of the instruction is valid, the current scan cycle of the main program ends immediately and the following instructions in the main program will not be executed.

2. When the power flow of the instruction is invalid, the instruction enables no action, and the instruction after it will be executed in order.

Note

The CFEND must be used in the main program, or the program cannot pass the compiling.

Example

When the program is running, if M0=OFF, the CFEND instruction will not enable any action. The following instructions LD and OUT will be executed. When M0 is ON, the CFEND instruction will be executed, the main program will end the current scan cycle immediately, and the following instructions will not be executed.

6.1.6 WDT: User Program Watchdog Reset

LAD:	Applicable to	IVC2 IVC1
	Influenced flag bit	
IL: WDT	Program steps	1

Function description

When the power flow is valid, the instruction will clear the user program watchdog, and the watchdog will restart timing.

6.1.7 EI: Enable Interrupt Instruction

LAD:	Applicable to	IVC2 IVC1
The second states and	Influenced flag bit	
IL: EI	Program steps	1

Function description

1. When the power flow of the EI instruction is valid, the interrupts in the current scan cycle will be enabled.

2. When the EI instruction is valid, the interrupt requests will be allowed to join the interrupt request queue to wait for system response.

6.1.8 DI: Disable Interrupt Instruction

LAD:	Applicable to	IVC2 IVC1
WITCH AND	Influenced flag bit	
IL: DI	Program steps	1

Function description

1. When the power flow is valid, the global interrupt enable flag is inactive, that is, the global interrupt will be off.

2. When the global interrupt enable flag is inactive, the interrupt events will not generate any interrupt request.

Note

When the DI instruction is valid, the system will still respond to the unprocessed interrupt requests in the request queue, but new interrupt events cannot generate interrupt requests.

6.1.9 CIRET: Conditional Return From User Interrupt Subprogram

LAD:	Applicable to	IVC2 IVC1
	Influenced flag bit	
IL: CIRET	Program steps	1

Function description

When the power flow is valid, the system will quit the current interrupt program immediately.

6.1.10 STOP: User Program Stop

LAD:	Applicable to	IVC2 IVC1
and the second	Influenced flag bit	
IL: STOP	Program steps	1

Function description

When the power flow is valid, the system will immediately stop the execution of the user program.

6.1.11 CALL: Calling A Subprogram

LAD:	Applicable to	IVC2 IVC1
[CALL (SBR_NAME) (PARAMI) (PARAM2) ()]	Influenced flag bit	
IL: CALL (SBR name) (PARAM1) (PARAM2)	Program steps	Determined by the subprogram parameters

Function description

When the power flow is valid, the system will call the designated subprogram, execute it, and then return to the main program to execute the instructions following the CALL instruction.

Note

1. The subprogram called by the CALL instruction must be defined in advance in the user program, or the program cannot pass the compiling.

2. The operand element type in the CALL instruction must match the **Data Type** defined in the local variable table of the subprogram, or the program cannot pass the compiling.

The following examples demonstrates some illegal matches.

Example 1: In the local variable table of subprogram SBR1, the data type of Operand 1 is DINT/DWORD. The following usages are illegal:

- CALL SBR1 Z0 (The data type of Z element cannot be DINT/DWORD)
- CALL SBR1 C199 (The data type of elements C0 to C199 cannot be DINT/DWORD)
- CALL SBR1 K2X0 (Kn addressing $1 \le n \le 3$, the data type cannot be DINT/DWORD)

Example 2: In the local variable table of the SBR1 subprogram, the data type of Operand 1 is INT/WORD, the following usages are illegal:

- CALL SBR1 C200 (The data type of element C200 to C255 cannot be INT/WORD)
- CALL SBR1 K2X0 (Kn addressing $4 \le n \le 8$, the data type cannot be INT/WORD)

3. The operand element type in the CALL instruction must match the **Variable Type** defined in the local variable table in the subprogram, or the program will not pass the compiling.

The following examples demonstrates some illegal matches.

Example: In the local variable table of subprogram SBR1, the operand type of Operand 1 is OUT or IN_OUT, the following usages are illegal:

- CALL SBR1 321 (constants cannot be changed, therefore it does not match OUT or IN_OUT)
- CALL SBR1 K4X0 (K4X0 is read-only, therefore it does not match OUT or IN_OUT)
- CALL SBR1 SD0 (SD0 is read-only, therefore it does not match OUT or IN_OUT)

4. The number of the operands in the CALL instruction must match the local variable table of the subprogram, or the program will not pass the compiling.

6.1.12 CSRET: Conditional Return From User Subprogram

LAD:	Applicable to	IVC2 IVC1
	Influenced flag bit	
IL: CSRET	Program steps	1

Function description

When the power flow is valid, the program will quit the current subprogram and return to the upper level subprogram.

6.2 Data Transmission Instruction

6.2.1 MOV: Move Word Data Transmission Instruction

LAD:									Applicable to			C2 IV			
<u>↔</u> +									Influenced flag bit						
IL: MOV	(S)	(D)							Progran	n steps	5				
Operand	Type						Applic	ahle el	ements						Offset
operand	турс						Аррію		ciricino						addressing
S	INT	Constant	nstant KnX KnY KnM KnS KnLM KnSM D SI								С	Т	V	Z	V
D	INT			KnY	KnM	KnS	KnLM		D	SD	С	Т	V	Z	V

Operand description

Note

S: Source operand

D: Destination operand

Function description

When the power flow is valid, the content of *S* is assigned to *D*, and the value of S remains unchanged. 1. The MOV instruction supports signed and unsigned integers. If the two operands are both elements, the data type is signed integer. If the source operand is a signed integer (for example, -10, +100), the destination operand is also a signed integer. If the source operand is an unsigned double integer (for example, 100, or 45535), the destination operand will also be an unsigned integer.

2. The corresponding element C only supports C0 to C199.

Example

xo			500	500		LD X0	
	-[MOV	DO	D10	1	MOV D0	D10

When X0 is ON, the content of D0 is assigned to D10, D10 = 500.

6.2.2 DMOV: Move Double Word Data Transmission Instruction

LAD:								Applical	ble to	IV	C2 IV				
~~~									Influenced flag bit						
IL: DMOV (S) (D)									Program steps 7						
Operand	Type						Applic	ام مامد	omonte						Offset
Operand	туре						Applic		emento						addressing
S	DINT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	I D	SD	С	Т	V	Z	V
D	DINT		KnY KnM KnS KnLM							SD	С		V		$\checkmark$

#### **Operand description**

S: Source operand

D: Destination operand

#### **Function description**

When the power flow is valid, the content of **S** is assigned to **D**, and the value of **S** remains unchanged.

#### Note

1. The DMOV instruction supports signed and unsigned double integers. If the two operands of the instruction are elements, the data types are signed integers. If the source operand of the instruction is a signed double integer (for example, -10, +100), the destination operand will also be signed integer. If the source operand is the unsigned double integer (for example, 100, 45535), the destination operand will also be unsigned integer.

2. The corresponding element C only supports C200 to C255.

#### Example



When X0 is ON, the content of (D0, D1) is assigned to (D10, D11). (D10, D11) is 50000.

## 6.2.3 RMOV: Move Floating Point Number Data Transmission

LAD:							4	Applica	ble to	IV	C2 IV	′C1		
(5)   [0) KMOV ] (5)   [0) RMOV ]								I	Influenc	ed flag	bit			
IL: RMOV (S) (D)									Progran	n steps	7			
Operand	Typo						Applic		monte					Offset
Operanu	туре						Applic		ments					addressing
S	REAL	Constant	onstant										V	V
D	REAL								D				V	$\checkmark$

#### Operand description

#### Example



# **D**: Destination operand **Function description**

S: Source operand

When the power flow is valid, the content of **S** is assigned to **D**, and the value of **S** remains unchanged. When X0 is ON, the content of (D0, D1) is assigned to (D10, D11). (D10, D11) is 50000.5.

## 6.2.4 BMOV: Move Data Block Transmission Instruction

LAD:								Applica	ble to	IV	C2 IV	C1			
1000									Influenced flag bit						
IL: BMO	IL: BMOV (S1) (D) (S2)									n steps	7				
Operand	Type						Applic	ام مام	amonte						Offset
Operand	туре						Applic		Sincino						addressing
S1	INT		KnX	KnY	KnM	KnS	KnLM		D	SD	С	Т	V		
D	INT			KnY	KnM	KnS	KnLM		D		С	Т	V		
S2	INT	Constant	Constant KnX KnY KnM KnS KnLM Kr							SD	С	Т	V	Z	

#### **Operand description**

**S**: Source operand, starting element of data block;

*D*: Destination operand, starting element of data block;

S2: size of data block

#### **Function description**

When the power flow is valid, the contents of **S2** elements starting with **S1** are assigned to the **S2** elements starting with **D**, and the contents of **S2** elements starting with **S1** remain unchanged.

#### Example



When X0 is ON, the contents of 10 elements starting with D0 are assigned to 10 elements starting with D100. D100 = D0, D101 = D1, ..., D109 = D9.

## 6.2.5 FMOV: Fill Data Block Instruction

LAD:									Applicable to			C2 IV	C1		
-14	'									Influenced flag bit					
IL: FMC	OV (S1	(D)	(S)	2)				Program steps 7							
Operand	Typo	Applicable elemente											Offset		
Operanu	Type						Applic		ements						addressing
S1	INT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	D	SD	С	Т	V	Z	V
D	INT			KnY	KnM	KnS	KnLM		D		С	Т	V		V
S2	INT	Constant KnX KnY KnM KnS KnLM							D	SD	С	Т	V	Z	V

#### **Operand description**

element of data block;

**D**: Destination operand,

#### Note

- 1. When **S1**, **D** and **S2** use C element, the legal range is C0 to C199.
- 2. **S2** is larger than or equal to 0.
- 3. When **S1** and **D** both use Kn addressing, Kn shall be the same.

starting element of data block;

S1: Source operand, starting

S2: size of data block

## **Function description**

When the power flow is valid, the contents of *S1* will be filled into *S2* elements starting with *D* element, and the content of *S1* remains unchanged.

	0,
Fxample	
Example	



When X0 is ON, the content of D0 will be filled into 10 elements starting with D100. D100 = D101 =  $\dots$  = D109 = D0 = 500.

## 6.2.6 DFMOV: Fill Data Block Double Word Instruction

LAD:									Applical	ble to	IV	C2 IV	/C1		
	<mark>₽}</mark> [	DFMØ82)	(SI)	]—–	( <del>17)</del>	E DFM	<b>1982) (</b> 3	<i>1)</i> ]	Influenc	ed flag	bit				
IL: DFM	ov (S	S1) (D)	) (	S2)					Program	n steps	9				
Operand	Type		Applicable elements												Offset
	71						111								addressing
S1	DINT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSⅣ	I D	SD	С		V		$\checkmark$
D	DINT			KnY	KnM	KnS	KnLM		D		С		V		V
S2	INT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSⅣ	I D	SD	С	Т	V	Z	$\checkmark$

#### **Operand description**

S1: Source operand

*D*: Destination operand, starting element of data block

S2: size of data block

#### **Function description**

When the power flow is valid, the contents of *S1* will be filled into *S2* elements starting with *D*, and the content of *S1* remains unchanged.

#### Note

1. When **S1**, **D** and **S2** use C element, the legal range is C200 to C255.

2. S2 is larger than or equal to 0.

3. When **S1** and **D** are both Kn addressing, Kn shall be the same.

#### Example



When X0 is ON, the content of (D0, D1) will be filled into 10 × 2 units starting with D10. (D10, D11) = (D12, D13) =...= (D28, D29) = (D0, D1) = 100000.

LD X0

SWAP D0

## 6.2.7 SWAP: Swap Bytes

LAD:								4	Applical	ole to	IV	C2 IV	C1		
All		State -	- alter	Z.,	AND -			I	nfluenc	ed flag	bit				
IL: SWAP (D)								F	Program	ı steps	3				
Operand	Type						Applic		monte						Offset
Operatio	Type						Applic		mento						addressing
D	INT			KnY	KnM	KnS	KnLM		D		С	Т	V	Z	$\checkmark$

#### **Operand description**

Example

**D**: Destination operand, the word element whose high/low bytes are swapped.

#### are swapped.

#### Function description

When the power flow is valid, the *D* element whose high/low bytes has been swapped will be saved.

# X0 10000 ]

When X0 is ON, the high/low bytes in D0 = 0x1027 (4135) will be swapped and saved. D0 is then 0x2710 (10000).

## 6.2.8 XCH: Exchange Word

LAD:									Applica	ble to	IV	C2 IV	C1		
1(101)/	$\overline{}$	(DS),101	1 14	<i>HHH</i>	<u> </u>	<i>E)KH</i>	-		Influenc	ed flag	bit				
IL: XCH	(D1)	(D)	2)						Progran	n steps	5				
Onerand	Type						Applic	ahle el	ements						Offset
operand	турс						Аррію		cincina						addressing
D1	INT			KnY	KnM	KnS	KnLM		D		С	Т	V	Z	$\checkmark$
D2	INT			KnY	KnM	KnS	KnLM		D		С	Т	V	Z	$\checkmark$

#### **Operand description**

D1: destination operand 1

#### Note

When using the Kn addressing mode, the Kn in **D1** and **D2** shall be the same.

## Example



LD X0 XCH D0 D10

When X0 is ON, D0 and D10 will exchange their values. Before the execution, D0 is 5000 and D10 is 1000. After the execution, D0 is 1000 and D10 is 5000.

## D2: destination operand 2 Function description

When the power flow is valid, **D1** and **D2** will exchange their values.

## 6.2.9 DXCH: Exchange Double Word Instruction

LAD:									Applicat	ole to	IV	C2 IV	C1		
7 <del>(21),</del>	$\sim$	-DSP2	cu I	(ar)/	/ 7	<u>12357</u>	ж Г	I	nfluenc	ed flag	bit				
IL: DXC	CH (D1	') (I	D2)					F	Program	ı steps	7				
Operand	Type						Applic	abla ala	monte						Offset
Operanu	Type						Applic		inents						addressing
D1	DINT			KnY	KnM	KnS	KnLM		D		С	Т	V	Z	V
D2	DINT			KnY	KnM	KnS	KnLM		D		С	Т	V	Z	V

## **Operand description**

D1: destination operand 1

D2: destination operand 2

When the power flow is valid,

D1 and D2 will exchange their

#### Note

When using the Kn addressing mode, the Kn in **D1** and **D2** shall be the same.

#### **Function description**

values.

## Example

VO.		1000000	5000000		LD X0	
	DXCH	DO	D10	1	DXCH D	0 D10

When X0 is ON, D0 and D10 will exchange their values. Before the execution and (D0, D1) is 5000000, (D10, D11) is 1000000. After the execution, (D0, D1) is 1000000 and (D10, D11) is 5000000.

## 6.2.10 PUSH: Push Instruction

LAD:									Applica	ble to	IV	C2 IV	C1		
$\mathcal{V}$	7 (4)	_ (V3 <b>\$35</b> 2)	(\$1	) <u> </u>	/ (Ø)-	-[ F1	(9992) (	(SI)	Influenc	ed flag	bit				
IL: PUSI	H (S1	) (D)	(S2	2)					Progran	n steps	7				
Operand	Туре									Offset addressing					
S1	INT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	D	SD	С	Т	V	Z	V
D	INT								D				V		V
S2	INT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	D	SD	С	Т	V	Z	V

### **Operand description**

#### S1: push value

*D*: the number of elements in the stack. It is also the element at the stack bottom. *S2*: stack size

#### Function description

1. When the power flow is valid, the value of *S1* will be pushed onto the top of the stack with *D* element as the bottom, and *D* will increase by 1. At this time, the address of the stack top unit is the address of *D* plus the value of *D*.

2. When the value of **D** reaches **S2**, one more push instruction will set the operation carry flag (SM181) to 1, and the push operation will not be executed.

## Note

1. When the stack is illegal (for example, when the stack size  $\leq$  0, the number of elements in the stack < 0, or when the stack size is beyond the limit), the system will report "Definition error of stack operated".

2. The stack size does not include the stack bottom element (the element designated by **D**).

3. **S2** indicates the stack size. Range:  $\geq 0$ .

#### Example



1. When M0 is ON, push D0 into the stack with D100 as the stack bottom.

- 2. Before the execution, D0 is 1000, D100 is 8 and D109 is 0.
- 3. After the execution, D0 is 1000, D100 is 9 and D109 is 1000.

## 6.2.11 FIFO: First-In-First-Out Instruction

LAD:									Applica	ble to	IV	/C2	VC1		
	<u>—</u> с	FIF0 (D1) (D2) (S) D1) (D2) (S)					]	Influenc	ed flag	bit					
IL: FIFO	(D1)	(D2)	(S)						Program	ı steps	7				
Operand	Type		Applicable elements											Offset	
operand	турс		Applicable elements												addressing
D1	INT								D				V		$\checkmark$
D2	INT			KnY	KnM	KnS	KnLM		D		С	Т	V	Z	$\checkmark$
S	INT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSN	I D	SD	С	Т	V	Z	$\checkmark$

## **Operand description**

**D1**: the number of elements in the stack. Its element address plus 1 is the address of the stack head.

D2: storage register for popped value

S: queue size

## **Function description**

1. When the power flow is valid, the value of the stack head (the element immediately following D1) with D1 as the queue head is assigned to D2. At the same time, the value of D1 subtracts 1, the contents of the **S** units after D1 will move forward, and the last unit is filled with 0.

2. When *D1* is 0, it indicates that the stack is empty, the zero flag (SM180) will be set 1.

## Note

1. When the stack is illegal (for example, when the stack size  $\leq 0$ , the number of elements in the stack < 0, or when the stack size is beyond the limit), the system will report "Definition error of stack operated".

2. The stack size does not include the stack bottom element (the element designated by **D1**)

3. **S** indicates the stack size. Range:  $\geq$  0.

## Example



FIFO D100 D0 10



1. When M0 is ON, the content of D101 is filled into D0, and at the same time the contents of D101  $\sim$  D110 move forward, and the D110 is filled with 0.

2. Before the execution: D0 = 0, D100 = 10, D101 = 1000, D102 = 2000, ..., D109 = 9000, D110 = 10000.

3. After the execution: D0 = 1000, D100 = 9, D101 = 2000, D102 = 3000,..., D109 = 10000, D110 = 0.

## 6.2.12 LIFO: Last-In-First-Out Instruction

LAD:									Applica	ble to	IV	C2 IV	C1		
4	₩ <u> </u>	LLHØ I	au y	<u> </u>	<del>RA [</del>	1. 1.17.18	1 (12)	-7-	Influenc	ed flag	bit				
IL: LIFC	IL: LIFO (D1) (D2) (S)									n steps	7				
Operand	Туре						Applic	able el	ements						Offset addressing
D1	INT								D				V		
D2	INT			KnY	KnM	KnS	KnLM		D		С	Т	V	Z	$\checkmark$
S	INT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	1 D	SD	С	Т	V	Z	$\checkmark$

## **Operand description**

**D1**: the number of elements in the queue. Its element address plus 1 is the address of the queue's head.

D2: storage register for popped value

S: queue size

#### **Function description**

 When the power flow is valid, the value of the stack head with D1 as the stack bottom is assigned to D2, and at the same time the value of D1 subtracts 1.
 When D1 is 0, it indicates that the stack is empty, the zero flag (SM180) will be set 1.

#### Note

1. When the stack is illegal (for example, when the stack size  $\leq 0$ , the number of elements in the stack < 0, or when the stack size is beyond the limit), the system will report "Definition error of stack operated".

2. The stack size does not include the stack bottom element (the element designated by *D1*)

3. **S** indicates the stack size. Range:  $\geq$  0.

## Example



1. When M0 is ON, the content of D110 is assigned to D0, the content of units D101 ~ D110 remain unchanged.

 Before the execution: D0 = 0, D100 = 10, D101 = 1000, D102 = 2000, ..., D109 = 9000, D110 = 10000.
 After the execution: D0 = 10000, D100 = 9, D101 =

1000, D102 = 2000, ..., D109 = 9000, D110 = 10000.

## 6.2.13 WSFR: Shift Right Word Instruction

LAD:									Applica	ble to	IV	C2 IV	C1		
<del>au</del> F	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										bit Ze	ero, car	ry, borr	ow	
IL: WSF	R (S1	1) (D)	(D) (S2) (S3) Program steps 9												
Operand	Туре		Applicable elements												Offset addressing
S1	INT		KnX	KnY	KnM	KnS	KnLM		D	SD	С	Т	V		
D	INT			KnY	KnM	KnS	KnLM		D		С	Т	V		
S2	INT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSⅣ	1 D	SD	С	Т	V	Z	
S3	INT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSⅣ	1 D	SD	С	Т	V	Z	

## **Operand description**

- S1: Source operand
- D: Destination operand, starting unit of word string
- S2: size of destination word queue
- S3: number of words filled rightward

## **Function description**

When the power flow is valid, the contents of **S2** units starting with **D** unit will move rightward **S3** words. The rightmost **S3** units will be discarded. At the same time, the contents of **S3** units starting with **S1** will be filled into the left end of the word string.

## Note

1. The elements with smaller SN are at the right, and the elements with larger SN are at the left.

2.  $S2 \ge 0$ ,  $S3 \ge 0$ ,  $S2 \ge S3$ .

3. When *S1* and *D* both use Kn addressing, Kn shall be the same.

## Example

...



1. When M0 is ON, the contents of 10 units starting with D100 unit will move rightward 3 words. The rightmost units D102 ~ D100 will be discarded. At the same time, the contents of the 3 units starting with D0 will be filled into the left end of the word string.

2. Before the execution: D2=300, D1=200, D0=100. D109=10000, D108=9000, D107=8000, D106=7000, D105=6000, D104=5000, D103=4000, D102=3000, D101=2000, D100=1000.

3. After the execution: D0 ~ D2 remain unchanged, D2=300, D1=200, D0=100. D109=300, D108=200, D107=100, D106=10000, D105=9000, D104=8000, D103=7000, D102=6000, D101=5000, D100=4000.

IVC Series Small PLC Programming Manual

LAD:									Applica	ble to	IV	C2 IV	C1		
<del>(0)</del>		SFL (53)	ł	] <i>⊕</i> )–∣	<b>⊢(</b> \$;	R/MSPL	<i>(SI)</i>	1	Influenc	ed flag	bit Ze	ero, car	ry, borr	ow	
IL: WS	FL (S1	') (D)	(S2	2) (S	S3)				Program	n steps	9				
Operand	Туре		Applicable elements											Offset addressing	
S1	INT		KnX	KnY	KnM	KnS	KnLM		D	SD	С	Т	V		
D	INT			KnY	KnM	KnS	KnLM		D		С	Т	V		
S2	INT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSN	1 D	SD	С	Т	V	Z	
S3	INT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSN	1 D	SD	С	Т	V	Z	

## 6.2.14 WSFL: Shift Left Word Instruction

#### **Operand description**

S1: source operand

**D**: destination operand, starting unit of word string

**S2**: size of destination word queue

**S3**: number of words filled for right forward

#### Function description

When the power flow is valid, the contents of *S2* units starting with *D* unit will move leftward *S3* words. The leftmost *S3* units will be discarded. At the same time, the contents of *S3* units starting with *S1* will be filled into the right end of the word string.

#### Note

1. The elements with smaller SN are at the right, and the elements with larger SN are at the left.

2.  $S2 \ge 0$ ,  $S3 \ge 0$ ,  $S2 \ge S3$ .

3. When **S1** and **D** both use Kn addressing, Kn shall be the same.







1. When X0 is ON, the contents of 10 units starting with D100 will move leftward 3 words. The leftmost units D109 ~ D107 will be discarded. At the same time, the contents of the 3 units starting with D0 will be filled into the right end of the word string.

2. Before the execution: D0=100, D1=200, D2=300. D109=10000, D108=9000, D107=8000, D106=7000, D105=6000, D104=5000, D103=4000, D102=3000, D101=2000, D100=1000

3. After the execution: D0 ~ D2 remain unchanged: D2=300, D1=200, D0=100. D109=7000, D108=6000, D107=5000, D106=4000, D105=3000, D104=2000, D103=1000, D102=300, D101=200, D100=100.

## 6.3 Integer Math Instructions

## 6.3.1 ADD: Add Integer Instruction

LAD:									Applica	ble to	IV	C2 IV	C1		
1-1	(152) - 7	( <i>UUU</i> )	(SD)	<i>Y</i> ,	(65)	- 7 10	(UR	(\$1)7	Influenc	ed flag	bit Ze	ero, car	ry, borr	w	
IL: ADD	(S1)	(S2)	(D)						Progran	n steps	7				
Operand	Type		Applicable elements												Offset
operand	турс						Аррію		cinenta						addressing
S1	INT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSN	1 D	SD	С	Т	V	Z	$\checkmark$
S2	INT	Constant	KnX	KnY	KnM	KnS	KnLM	KnS№	1 D	SD	С	Т	V	Z	V
D	INT			KnY	KnM	KnS	KnLM		D		С	Т	V	Z	$\checkmark$

#### **Operand description**

S1: Source operand 1

S2: Source operand 2

**D**: Destination operand

## **Function description**

1. When the power flow is valid, add *S1* and *S2*, and assign the operation result to *D*.

2. When the operation result (D) is larger than 32767, the carry flag bit (SM181) will be set. When the operation result is 0, the zero flag bit (SM180) will be set. When the operation result is less than -32768, the borrow flag bit (SM182) will be set.

## 6.3.2 SUB: Subtract Integer Instruction

## Example

	ADD	1000 D0	2000 D1	3000 D10	]
ID X0					

ADD D0 D1 D10

When X0 is ON, add D0 (1000) and D1 (2000), and assign the result to D10, D10 = 3000.

LAD:									Applical	ble to	IV	C2 IV	C1		
1-1	(65) -2	(apre)	(\$1)		(63)	1 2	(SI) (SI) Influenced flag bit Zero, carry, borrow								
IL: SUB	(S1)	(S2)	(D)						Program	ı steps	7				
Operand	Type						Applic	ahle el	ements						Offset
operana	турс						7 (ppilo		emento						addressing
S1	INT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSN	1 D	SD	С	Т	V	Z	$\checkmark$
S2	INT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSN	1 D	SD	С	Т	V	Z	$\checkmark$
D	INT			KnY	KnM	KnS	KnLM		D		С	Т	V	Z	$\checkmark$

#### **Operand description**

S1: Source operand 1

S2: Source operand 2

D: Destination operand

## **Function description**

1. When the power flow is valid, S1 subtracts S2, and the operation result is assigned to *D*.

2. When the operation result (D) is larger than 32767, the carry flag bit (SM181) will be set. When the operation result is 0, the zero flag bit (SM180) will be set. When the operation result is less than -32768, the borrow flag will be set bit (SM182).

## Example



LD X0

SUB D0 D1 D10

When X0 is ON, D0 (1000) subtracts D1 (2000), and the result -1000 is assigned to D10.

## 6.3.3 MUL: Multiply Integer Instruction

LAD:	LAD: App										IV	C2 IV	C1		
	H     [ MUL (S1) (S2) (D) ]     Influenced flag bit     Zero, carry, borrow														
IL: MUL	(S1)	S1)   (S2)   (D)   Program steps   8													
Operand	Туре				Applicable elements										Offset addressing
S1	INT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSN	1 D	SD	С	Т	V	Z	V
S2	INT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSN	1 D	SD	С	Т	V	Z	V
D	DINT			KnY	KnM	KnS	KnLM		D		С		V		

#### **Operand description**

S1: Source operand 1

S2: Source operand 2

D: Destination operand

#### **Function description**

When the power flow is valid, *S1* multiplies *S2*, and the operation result is assigned to *D*.

#### Note

The operation result of MUL instruction is a 32-bit data.

#### Example

_	XO I	-[	MUL.	1000 D0	2000 D1	2000000 D10	]
LD	X0						

MUL D0 D1 D10

When X0 is ON, D0 (1000) multiplies D1 (2000), and the result 2000000 is assigned to (D10, D11).

## 6.3.4 DIV: Divide Integer Instruction

LAD:									Applica	ble to	IV	C2 IV	C1		
	[	DIV	(S1)	(3	52)	(D)	]		Influenced flag bit Zero, carry, borrow			ow			
IL: DIV	(S1)	(S2)	(D)						Program steps 7						
Operand	Type						Applic		omonte	Offset					
Operanu	туре						Applic		ements						addressing
S1	INT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSⅣ	1 D	SD	С	Т	V	Z	V
S2	INT	Constant	KnX	KnY KnM KnS KnLM KnSM D						SD	С	Т	V	Z	V
D	INT			KnY	KnM	KnS	KnLM		D		С	Т	V	Z	V

#### **Operand description**

S1: Source operand 1

S2: Source operand 2

D: Destination operand

#### **Function description**

When the power flow is valid, *S1* is divided by *S2*, and the operation result is assigned to *D* (*D* includes 2 units, one storing the quotient, the other storing the remainder).

#### Note

 $S2 \neq 0$ , otherwise, the system will report "Divided by 0 error", and the instruction will not be executed.

#### Example



DIV D0 D1 D10

When X0 is ON, D0 (2500) is divided by D1 (1000), the result is assigned to (D10, D11). D10=2, D11=500.

## 6.3.5 SQT: Square Root Integer Instructions

LAD:									Applicable to			C2 IV	C1		
	<b> </b>	-[ SQ1	Г	(S)		(D)		] [	Influenced flag bit			ero, car	ry, borr	ow	
IL: SQT	(S)	(D)							Program steps 5						
Operand	Type						Applic	ahle el	ements						Offset
operand	турс						Applic		cinento						addressing
S	INT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSN	1 D	SD	С	Т	V	Z	$\checkmark$
D	INT			KnY	KnM	KnS	KnLM		D		С	Т	V	Z	$\checkmark$

#### **Operand description**

S: Source operand

**D**: Destination operand

#### **Function description**

#### Example

will not be executed.

Note

1	xo			1000	31		LD 🕽	X0	
F		-[	SQT	DO	D10	1	SQT	D0	D10

 $S \ge 0$ , otherwise, the system will report operand error, and the instruction

When X0 is ON, extract D0 (1000), and assign the result to D10, D10=31.

1. When the power flow is valid, **S** is extracted, and the operation result is assigned to **D**.

2. When the operation result (**D**) is 0, the zero flag bit (SM180) will be set. When the operation result rounds off the decimal fraction, the borrow flag bit (SM182) will be set.

## 6.3.6 INC: Increment Integer Instruction

LAD:							1	Applical	ole to	IV	C2 IV	C1		
<del>кс</del> —	( <del>P)</del> —(	: ]] <mark> -(</mark>   (	Ŋ <mark>₩  (₽?[</mark> ]]						ed flag	bit Ze	ero, car	ry, borr	ow	
IL: INC	(D)						1	Program	ı steps	3				
Operand	Туре					Applic	able ele	ements		·				Offset addressing
D	INT		KnY	KnM	KnS	KnLM		D		С	Т	V	Z	

#### **Operand description**

D: Destination operand

#### Function description

When the power flow is valid, *D* increases by 1.

#### Note

- 1. This instruction is a cyclic increase instruction. Range: -32768 ~ 32767.
- 2. The supported range of C element: C0 ~ C199.

#### Example

XO		1001
	INC	DO

LD X0 INC D0

When X0 is ON, D0 (1000) is increased by 1. After the execution, D0 is 1001.

1

IVC Series Small PLC Programming Manual

## 6.3.7 DEC: Decrement Integer Instruction

LAD:									Applica	ble to	IN	C2 IV	C1		
	<u>v</u> _2	C II	-/	p)	£ 4	H			Influenc	ed flag bi	t Z	ero, car	ry, borr	ow	
IL: DEC	(D)								Progran	n steps	3				
Operand	Туре						Applicabl	e ele	ements						Offset addressing
D	INT			KnY	KnM	KnS	KnLM		D		С	Т	V	Z	V
Operand	desc	ription				Exam	ple								
D: Destina	ation o	operand	t			XC	)		999	120			LD	X0	
Function	desc	ription						6	DO				DEC	D0	
When the <b>D</b> decreas	powe ses 1.	r flow i	s valid,			When	X0 is ON,	D0	(1000) (	decrease	s 1. /	After the	e execu	ition, D	0=999.
Note															
This instru	uction	is a cv	clic												

This instruction is a cyclic decrease instruction, with the range of  $-32768 \sim 32767$ .

## 6.3.8 VABS: Integer Absolute Value Instruction

LAD:									Applical	ble to	IN	/C2 IV	C1		
I	[	VABS	(S)		(D)	]			Influenced flag bit		bit Z	ero, car	ry, borr	ow	
IL: VABS	6 (S)	(D)							Program	ı steps	5				
Operand	Туре						Applic	able el	ements						Offset addressing
S	INT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	D	SD	С	Т	V	Z	$\checkmark$
D	INT			KnY	KnM	KnS	KnLM		D		С	Т	V	Z	$\checkmark$

#### **Operand description**

S: Source operand

**D**: Destination operand

#### **Function description**

When the power flow is valid, get the absolute value of *S* and assign it to *D*.

## Note

The range of **S** shall be -32767 ~ 32767. When **S** is -32768, the system will report operand error, and the instruction will not be executed.

## Example



When X0 is ON, get the absolute value of D0 (-1000), and assign the result to D10. D10=1000.

## 6.3.9 NEG: Negative Integer Instruction

LAD:									Applical	ble to	IV	C2 IV	C1		
1/(5) - 1 - 10) 10 1 - 10) 10									Influenc	ed flag	bit Z	ero, car	ry, borr	ow	
IL: NEG	(S)	(D)							Program	n steps	5				
Operand	Type						Applic	ام مامد	omonte						Offset
Operanu	туре						Applic		emento						addressing
S	INT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	D	SD	С	Т	V	Z	$\checkmark$
D	INT			KnY	KnM	KnS	KnLM		D		С	Т	V	Z	

#### **Operand description**

S: Source operand

#### Example



# **D**: Destination operand **Function description**

When the power flow is valid, get the negative value of *S* and assign the result to *D*.

#### Note

The range of **S** shall be  $-32767 \sim 32767$ . When **S** is -32768, the system will report operand error, and the instruction will not be executed.

6.3.10 DADD: Add Double Integer Instruction

When X0 is ON, get the negative value of D0 (1000) and assign the result to D10. D10=-1000.

LAD:									Applica	ble to	IV	C2 IV	C1		
	( <del>85) -</del> 2	( <b>a</b> pnu _	(\$1	-120	- ( <del>62)</del>	-7 14	(Q))	(31)	Influenc	ed flag	bit Ze	ero, car	ry, borr	ow	
IL: DAD	D (S1	(S2) (S2)	(1	D)					Progran	n steps	10	)			
Operand	Туре						Applic	ements						Offset addressing	
S1	DINT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSN	I D	SD	С		V		$\checkmark$
S2	DINT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSN	I D	SD	С		V		V
D	DINT			KnY	KnM	KnS	KnLM		D		С		V		$\checkmark$

#### **Operand description**

S1: Source operand 1

S2: Source operand 2

D: destination operand

#### **Function description**

1. When the power flow is valid, add S1 and S2, and assign the operation result to **D**.

2. When the operation result

(D) > 2147483647, the carry flag bit (SM181) will be set. When the operation result is 0, the zero flag bit (SM180) will be set. When the operation result < -2147483648, the borrow flag bit (SM182) will be set.

#### Example



When X0 I ON, add the value (100000) of (D0, D1) and the value (200000) of (D2, D3), and assign the result to (D10, D11). (D10, D11) = 300000.

## 6.3.11 DSUB: Subtract Double Integer Instruction

LAD:									Applica	ble to	IN	C2 IV	C1		
-/ 1/25	¥_7 -	USILIV (	8Z ]]		1 <del>21 - [</del>	- 12574	2 132	-1]-	Influenc	ed flag	bit Z	ero, car	ry, borr	ow	
IL: DSU	3 (S1	') (S2)	( <i>L</i>	))				Program	n steps	1	0				
Operand	Type						Applic	ام مامد	omonte						Offset
Operand	туре						Аррііс		ementa						addressing
S1	DINT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSⅣ	I D	SD	С		V		
S2	DINT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSⅣ	I D	SD	С		V		
D	DINT			KnY	KnM	KnS	KnLM		D		С		V		$\checkmark$

#### **Operand description**

S1: Source operand 1

S2: Source operand 2

D: Destination operand

#### **Function description**

1. When the power flow is valid, S1 subtracts S2, and the operation result is assigned to **D**.

2. When the operation result (**D**) > 2147483647, the carry flag bit (SM181) will be set. When the operation result is 0, the zero flag bit (SM180) will be set. When the operation result < -2147483648, the borrow flag bit (SM182) will be set.

## 6.3.12 DMUL: Multiply Double Integer Instruction

Example
---------



LD X0

DSUB D0 D2 D10

When X0 is ON, the value (100000) of (D0, D1) subtracts the value (200000) of (D2,D3), and the result –100000 is assigned to (D10, D11).

LAD:									Applica	ble to	IV	C2 IV	C1		
	<del>82) [</del>	DMI <b>(12</b> )	(SI)	]—	( <del>\$2)</del>	E DMV	$\mathcal{D}$ (3	SD]	Influenc	ed flag	bit Ze	ero, car	ry, borre	ow	
IL: DMU	L (S1	(S2) (S2)	(L	<b>)</b> )					Progran	n steps	10	)			
Operand	Type						Applic	ام مالمد	omonte						Offset
Operanu	туре						Applic		emento						addressing
S1	DINT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSⅣ	1 D	SD	С		V		V
S2	DINT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSⅣ	1 D	SD	С		V		$\checkmark$
D	DINT			KnY	KnM	KnS	KnLM		D		С		V		$\checkmark$

#### **Operand description**

S1: Source operand 1

S2: Source operand 2

D: Destination operand

#### **Function description**

When the power flow is valid, *S1* multiplies *S2*, and the result is assigned to *D*.

## Note

The result of the DMUL instruction is a 32-bit data, and overflow may occur.

#### Example



LD X0

DMUL D0 D2 D10

When X0 is ON, the value (83000) of (D0, D1) multiplies the value (2000) of (D2,D3), and the result 1660000000 is assigned to (D10, D11).

## 6.3.13 DDIV: Divide Double Integer Instruction

LAD:									Applica	ble to	IV	C2 IV	C1		
	<del>\$2) [</del>	DD ₥	(SI)	]—–	( <del>\$2)</del>	-E DD <b>X</b>	<b>v)</b> (2	<i>[(</i> 12	Influenc	ed flag	bit Ze	ero, car	ry, borr	ow	
IL: DDIV	(S1)	(S2)	(D)						Program	ı steps	1(	)			
Operand	Type						Applic	ام مالمد	omonte						Offset
Operand	туре		Applicable elements												addressing
S1	DINT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSN	1 D	SD	С		V		$\checkmark$
S2	DINT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	1 D	SD	С		V		$\checkmark$
D	DINT			KnY	KnM	KnS	KnLM		D		С		V		$\checkmark$

#### **Operand description**

Source operand 1Source operand 2

D: Destination operand

**Function description** 

When the power flow is valid, *S1* is divided by *S2*, and the

operation result is assigned to D

(D includes 4 units, with the first

two storing the quotient, the other two storing the remainder)

## Note

 $S2 \neq 0$ , otherwise, the system will report "Divided by 0 error", and the instruction will not be executed.

#### Example

XO			83000	2000	41		LD X0	
	-[	DDIV	DO	D2	D10	]	DDIV D0 D2	D10

When X0 is ON, the value (83000) of (D0, D1) is divided by the value (2000) of (D2, D3), and the result is assigned to (D10, D11) and (D12,D13). (D10, D11) = 41, (D12, D13) = 1000.

## 6.3.14 DSQT: Square Root Double Integer Instruction

LAD:									Applica	ble to	IV	C2 IV	C1		
	$\vdash$	[ DSQT	C	(S)	(L	))	]		Influenc	ed flag	bit Ze	ero, car	ry, borr	ow	
IL: DSC	ΩT (S)	(D)							Progran	ı steps	7				
Operand	Type						Applic		omonte						Offset
Operanu	туре						Applic		ements						addressing
S	DINT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	D	SD	С		V		
D	DINT			KnY	KnM	KnS	KnLM		D		С		V		$\checkmark$

#### **Operand description**

S: Source operand

D: Destination operand

#### **Function description**

1. When the power flow is valid, **S** is extracted, and the operation result is assigned to **D**.

When the operation result
 (D) is 0, the zero flag bit
 (SM180) will be set. When the operation result rounds off the decimal fraction, the borrow flag bit (SM182) will be set.

## Note

 $S \ge 0$ , otherwise, the system will report operand error, and the instruction will not be executed.

## Example



When X0 is ON, extract the value (83000) of (D0, D1), and assign the result to (D10, D11). (D10, D11) = 288.

## 6.3.15 DINC: Increment Double Integer Instruction

LAD:								4	Applical	ole to	IV	C2 IV	C1		
NC										ed flag	bit Ze	ero, car	ry, borr	ow	
IL: DINC (D)									Program	ı steps	4				
Operand	Type						Applic	عالم ماد	monte						Offset
Operand	туре						Applic		mento						addressing
D	DINT			KnY	KnM	KnS	KnLM		D		С		V		$\checkmark$

Operand description	Note	
<b>D</b> : Destination operand	1. This instruction is a cyclic increase instruction. Range: -2147	483648 ~
Function description	2147483647.	
When the power flow is valid.	2. The supported range of C element: C200 ~ C255.	
<b>D</b> increases 1.	Example	
	x0 100001 LD X0	
	When X0 is ON, the value (100000) of (D0, D1) increases 1. Aft execution, (D0, D1) = 100001.	ter the

## 6.3.16 DDEC: Decrement Double Integer Instruction

LAD:								4	Applical	ole to	IV	C2 IV	C1		
									nfluenc	ed flag	bit Ze	ero, cari	y, borr	ow	
IL: DDEC (D)									Program	ı steps	4				
Operand	Type	Applicat							monte						Offset
operatio	Type						Applic								addressing
D	DINT			KnY	KnM	KnS	KnLM		D		С		V		

## **Operand description**

D: Destination operand

#### **Function description**

When the power flow is valid, **D** decreases 1.

#### Note

This instruction is a cyclic decrease instruction. Range: -2147483648  $\sim$  2147483647

#### Example



When X0 is ON, the value (100000) of (D0, D1) decreases 1. After the execution, (D0, D1) = 99999.

## 6.3.17 DVABS: Double Integer Absolute Value Instruction

LAD:									Applical	ole to	IV	C2 IV	C1		
<del>(S)</del>		<i>(d)</i> dvabs	; ] <del>(</del>	<del>(s)</del>	<b>⊢_</b> (	(D) DVAI	3S ]	I	nfluenc	ed flag	bit Ze	ero, carı	ry, borre	w	
IL: DVAB	S (S	S) (D	)					I	Program	ı steps	7				
Operand	Tuno						Applia	abla ala	monto						Offset
Operanu	Type						Applic	able ele	ments						addressing
S	DINT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	D	SD	С		V		$\checkmark$
D	DINT			KnY	KnM	KnS	KnLM		D		С		V		V

#### **Operand description**

D: Destination operand

**Function description** 

S: Source operand

#### Example



When the power flow is valid, get the absolute value of *S* and assign the result to *D*.

#### Note

The range of **S** shall be -2147483647 ~ 2147483647. When S is -2147483648, the system will report operand error, and the instruction will not be executed. When X0 is ON, get the absolute value (100000) of (D0, D1) and assign the result to (D10, D11). (D10, D11) = 100000.

## 6.3.18 DNEG: Negative Double Integer Instruction

LAD:									Applical	ble to	IV	C2 IV	C1		
V <del>(c)</del>	$\leftarrow$	A7 (D <del>)</del>	2.17	J <del>(3)</del>	$\rightarrow$ $\succ$	10	) UBC	à T	Influenc	ed flag	bit Z	ero, car	ry, borr	ow	
IL: DNE	EG (S)	(D)							Progran	1 steps	7				
Operand	Typo						Applic		omonte						Offset
Operatio	Type						Applic		ements						addressing
S	DINT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	D	SD	С		V		
D	DINT			KnY	KnM	KnS	KnLM		D		С		V		$\checkmark$

#### **Operand description**

S: Source operand

D: Destination operand

#### **Function description**

When the power flow is valid, get the negative value of *S* and assign the result to *D*.

#### Note

The range of S shall be -2147483647 ~ 2147483647. When the value of **S** is -2147483648, the system will report operand error, and the instruction will not be executed.

#### Example



When X0 is ON, get the negative value (-100000) of (D0, D1), and assign the result to (D10, D11). (D10, D11) = -100000.

## 6.3.19 SUM: Sum Integer Instruction

LAD:									Applica	ble to	IV	C2 IV	C1		
	<del>\$2) [</del>	SUMD)	<i>(SI)</i> ]		( <del>\$2)</del>	E su	<b>D) (</b> S	<i>I</i> )]	Influenc	ed flag	bit Ze	ero, car	ry, borr	ow	
IL: SUM	(S1)	(S2)	(S2) (D) Program steps 8												
Operand	Type		Applicable elements												
operand	турс						Applie		emento						addressing
S1	INT		KnX	KnY	KnM	KnS	KnLM	KnSM	1 D	SD	С	Т	V	Z	
S2	INT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	1 D	SD	С	Т	V	Z	$\checkmark$
D	DINT			KnY	KnM	KnS	KnLM		D		С		V		

#### **Operand description**

S1: Source operand, starting unit of summing
S2 : Source operand, number of units to be summed up
D: Destination operand, summing result

## Function description

When the power flow is valid, the contents of *S2* units starting with the starting unit (*S1*) will be summed up, and the summing result is assigned to the *D* unit.

#### Note

1. The operation result of the SUM instruction is a 32-bit data.

2.  $0 \le S2 \le 255$ , or system will report operand error.

3. Since **D** is a 32-bit data, the carry and borrow flags are constantly 0, and the zero flag is determined by the final summing result.

## Example



When X0 is ON, the integers of 5 elements starting form **D0** will be summed up, and the result is assigned to (D100, D101), (D100, D101) = D0+...+D4 = 15000.

6.3.20 DSUM: Sum Double Integer Instruction

LAD:									Applica	ble to	IV	C2 IV	C1		
	<del>2) (</del>	DSIAN	(SI)	]—–	( <del>\$2)</del>	E DSM	<b>W</b> (3	SD]	Influenc	ed flag	bit Ze	ero, car	ry, borr	ow	
IL: DSUM	(S1	1) (S2)	(1	<b>)</b> )					Progran	n steps	9				
Operand	Typo														Offset
Operanu	Type						Applic		ements						addressing
S1	DINT		KnX	KnY	KnM	KnS	KnLM	KnSM	D	SD	С		V		
S2	INT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	D	SD	С	Т	V	Z	$\checkmark$
D	DINT			KnY	KnM	KnS	KnLM		D		С		V		$\checkmark$

#### **Operand description**

unit of summing

summing result

S1: Source operand, starting

S2: Source operand, number

When the power flow is valid,

the contents of S2 × 2 units

starting with the starting unit

(S1) will be summed up, and

of data to be summed up

D: destination operand,

**Function description** 

the summing result is

assigned to the D unit.

Note

 $0 \leq S2 \leq 255$ , or the system will report operand error.

Example



When X0 is ON, the double integers of  $5 \times 2$  units starting with D0 will be summed up, and the result is assigned to (D100, D101).

## 6.4 Floating-Point Number Math Instruction

## 6.4.1 RADD: Add Floating Point Number Instruction

LAD:										Applic	able to		IVC2	IVC1	
	(65)	<u>2) {</u> R(MBD) (S1)] <u>} { (52)</u> { R2MD) (S (S1) (S2) (D)							(SD)	Influer	nced fla	g bit	Zero,	carry, b	orrow
IL: RAD	D (S1	') (S2)	(1	D)						Progra	am step	S	10		
Operand	Type						Annlic	ahla ala	ments						Offset
Operand	туре						Applic		mento						addressing
S1	REAL	Constant							D				V		$\checkmark$
S2	REAL	Constant							D				V		$\checkmark$
D	REAL								D				V		V

## **Operand description**

- S1: Source operand 1
- **S2**: Source operand 2
- D: Destination operand

#### **Function description**

1. When the power flow is valid, add *S1* and *S2*, and assign the operation result to *D*.

2. When the operation result (*D*) is not within (-1.701412e

+ 038) ~ (1.701412e + 038), the carry flag bit (SM181) will be set. When the operation result is 0, the zero flag bit (SM180) will be set.

#### Example



When X0 is ON, add the value (-10000.2) of (D0, D1) and the value (2000.5) of (D2, D3), and the result -7999.7 is assigned to (D10, D11).

## 6.4.2 RSUB: Subtract Floating Point Number Instruction

LAD:								Α	pplicabl	e to	IVC	2 IV	/C1	
	<del>// [</del>	RSI <b>(B</b> )	(51)]—	<del>) (</del>	RSI(D)	<i>(SI)</i> ]	In	fluence	d flag bit	Zer	o, ca	rry, I	oorrow	
IL: RSUB	(S1)	(S2) (D	))					Ρ	rogram	steps	10			
Operand	Type					\nnlicah	o olomont	¢						Offset
Operand	Type				<i>,</i>	hplicab	e element	3						addressing
S1	REAL	Constant						D				V		$\checkmark$
S2	REAL	Constant						D				V		$\checkmark$
D	REAL							D				V		$\checkmark$

#### **Operand description**

S1: Source operand 1

S2: Source operand 2

D: Destination operand

## **Function description**

1. When the power flow is valid, **S2** is subtracted from **S1**, and the operation result is assigned to **D**. 2. When the operation result (**D**) is not within  $(-1.701412e + 038) \sim (1.701412e + 038)$ , the carry flag bit (SM181) will be set. When the operation result is 0, the zero flag bit (SM180) will be set.

## Example



LD X0

## RSUB D0 D2 D10

When X0 is ON, the value (2000.5) of (D2, D3) is subtracted from the value (-10000.2) of (D0, D1), and the result -12000.7 is assigned to (D10, D11).

6.4.3	RMUL: Multiply	Floating	Point	Number	Instruction
-------	----------------	----------	-------	--------	-------------

LAD:									Applica	ole to	IV	C2 IV	C1		
	<b>⊢</b> [	RMUL	(S1)		(S2)	6	(D)	] נ	Influenc	ed flag l	oit Ze	ero, cari	y, borr	ow	
IL: RMU	L (S1	') (S2)	(1	<b>D</b> )					Progran	ı steps	10	)			
Operand	Type						Applic		lomonte						Offset
Operatio	Type						Applic		lements						addressing
S1	REAL	Constant							D				V		V
S2	REAL	Constant							D				V		V
D	REAL								D				V		

#### **Operand description**

S1: Source operand 1

S2: Source operand 2

D: Destination operand

#### **Function description**

1. When the power flow is valid, *S1* multiplies *S2*, and the operation result is assigned to *D*.

2. When the operation result (D) is not within (-1.701412e + 038) ~ (1.701412e + 038), the carry flag bit (SM181) will be set. When the operation result is 0, the zero flag bit (SM180) will be set.

## Example

	XO		-10000	22000.50	00200054	40
-		RMUL	DO	D2	D10	]
LD	X0					

RMUL D0 D2 D10

When X0 is ON, the value (-10000.2) of (D0, D1), multiplies the value (2000.5) of (D2, D3), and the result -20005400.0 is assigned to (D10, D11) (actually the product is -20005400.1, but is rounded off to the calculation precision).

## 6.4.4 RDIV: Divide Floating Point Number Instruction

LAD:									Applica	ole to	IV	C2 IV	C1		
	<del>) (24</del>	RD (D)	(D) (S1)] (52) [ RD(D) (S2) (D)						Influenc	ed flag	bit Ze	ero, car	ry, borr	ow	
IL: RDIV	' (S1)	(S2)	(D	)					Progran	ı steps	10	)			
Operand	Type		(S2) (D) Program steps 10 Applicable elements												Offset
Operand	туре						Applic		emento						addressing
S1	REAL	Constant							D				V		
S2	REAL	Constant							D				V		
D	REAL								D				V		

#### **Operand description**

- Source operand 1
- S2: Source operand 2
- D: Destination operand

#### **Function description**

When the power flow is valid, *S1* is divided by *S2*, and the operation result is assigned to *D* (which includes 4 units, with the first two storing the quotient, the other two storing the remainder)
 When the operation result (*D*) is not within (-1.701412e + 038) ~ (1.701412e + 038), the carry flag bit (SM181) will be set. When the operation result is 0, the zero flag bit (SM180) will be set.

#### Note

 $S2 \neq 0$ , or the system will report "Divided by 0 error", and the RDIV instruction will not be executed.

#### Example



RDIV D0 D2 D10

When X0 is ON, the value -10000.2 of (D0, D1) is divided by the value 2000.5 of (D2, D3), and the result -4.998850 is assigned to (D10, D11).

## 6.4.5 RSQT: Square Root Floating Point Number Instruction

LAD:									Applical	ble to	IV	C2 IV	C1		
<del>(S)</del>		- <b>(D)</b> RSQ	Т	] <del>(\$)</del>	$+$ $\vdash$	— <b>[</b> p)	RSQT	]	Influenc	ed flag	bit Ze	ero, car	ry, borr	ow	
IL: RSQ	T (S)	(D)							Progran	ı steps	7				
Operand	Tuno						Applic		monto						Offset
Operanu	туре						Applic		ements						addressing
S	REAL	Constant							D				V		
D	REAL								D				V		$\checkmark$

#### **Operand description**

- S: Source operand
- D: Destination operand

#### **Function description**

1. When the power flow is valid, **S** is extracted, and the operation result is assigned to **D**.

2. When the operation result (*D*) is 0, the zero flag bit (SM180) will be set.

## Note

 $S \ge 0$ , or the system will report operand error, and the instruction will not be executed.

## Example



LD X0

#### RSQT D0 D10

When X0 is ON, extract the value (10000.2) of (D0, D1), and assign the result 100.000999 to (D10, D11).

## 6.4.6 RVABS: Floating Point Number Absolute Value Instruction

LAD:								Applical	ole to	IV	C2 IV	C1		
<del>(S)</del>		$ [D] RVABS ] \xrightarrow{(S)}   +$			(D)	RVABS	]	Influenc	ed flag	bit Ze	ero, car	ry, borre	ow	
IL: RVA	3S (S	S) (D)						Program	n steps	7				
Operand	Туре					Applic	able ele	ements						Offset addressing
S	REAL	Constant						D				V		V
D	REAL							D				V		$\checkmark$

#### **Operand description**

S: Source operand

D: Destination operand

#### **Function description**

When the power flow is valid, get the absolute value of **S** and assign the value to **D**.

#### Example

X0 -10000.2...10000.20... D0 D10 ] LD X0

RVABS D0 D10

When X0 is ON, get the absolute value (10000.2) of (D0, D1), and assign the result to (D10, D11).

## 6.4.7 RNEG: Negative Floating Point Number Instruction

							Applica	ble to	IV	C2 IV	C1		
	- <i>ED)</i> RNEG	] <del>(S)</del>	$+ \vdash$	(D)	RNEG	]	Influenc	ed flag	bit Ze	ero, car	ry, borr	ow	
G (S)	(D)						Progran	1 steps	7				
Type					Applic	ام مام	amonte						Offset
туре					дрыс		emento						addressing
REAL	Constant						D				V		V
REAL							D				V		V
	G (S) Type REAL REAL	G (S) (D) Type REAL Constant REAL	Image: point of the second s	Image: Constant     Image: Constant       REAL     Constant	Image: product of the second secon	Image: Problem state     Image: Problem state       Image: Problem state     Ima	Image: style	Applical           Image: Constant         Program           Type         Application           REAL         Constant         D           REAL         D         D	Applicable to       Influenced flag       G     (D)       Type     Applicable elements       REAL     Constant     D       REAL     D	Applicable to     IV       Influenced flag bit     Zo       G (S) (D)     Program steps     7       Type     Applicable elements       REAL     Constant     D       REAL     D     D	Applicable to     IVC2     IVC2       Image: Constant     Image: Constant     Image: Constant     Image: Constant       REAL     Constant     D     Image: Constant       REAL     Image: Constant     D     Image: Constant	Applicable to     IVC2     IVC1       Influenced flag bit     Zero, carry, born       G (S) (D)     Program steps     7       Type     Applicable elements       REAL     Constant     D     V       REAL     D     V       REAL     D     V	Applicable to     IVC2     IVC1       Influenced flag bit     Zero, carry, borrow       G (S) (D)     Program steps     7       Type     Applicable elements     V       REAL     Constant     D     V       REAL     Image: Second steps     V

#### **Operand description**

S: Source operand

D: Destination operand

#### **Function description**

When the power flow is valid, get the negative value of **S** and assign the result to **D**.

## Example



LD X0

RNEG D0 D10

When X0 is ON, get the negative value -10000.2 of (D0, D1) and assign the result to (D10, D11).

## 6.4.8 SIN: Floating Point Number Sin Instruction

LAD:									Applica	ble to	IV	C2 IV	C1			
<del>(S)</del>		- <b>[</b> ()) SII	N	] <del>(⊗)</del>    {@) stn ()					Influenc	ed flag	bit Z	ero, car	ry, borr	ow		
IL: SIN	(S)	(D)							Progran	1 steps	7					
Operand	Туре						Applic	able el	ements						Offse address	et sing
S	REAL	Constant							D				V		$\checkmark$	
D	REAL								D				V		$\checkmark$	

#### **Operand description**

S: Source operand

D: Destination operand

#### **Function description**

1. When the power flow is valid, get the SIN value of **S** (unit: radian), and assign the result to **D**.

2. When the operation result (*D*) is 0, the zero flag bit (SM180) will be set.

## Example



LD X0

SIN D0 D10

When X0 is ON, get the SIN value of (D0, D1) =1.57, and assign the value 1 to (D10, D11).

## 6.4.9 COS: Floating Point Number COS Instruction

LAD:								Applicable to			C2 IV			
<del>(S)</del>		- <b>[</b> p) cos	] <del>(\$)</del>	$+$ $\vdash$	—(D)	COS	]	Influenced flag bit			ero, car			
IL: COS	(S)	(D)						Progran	n steps	7				
Operand	Type		Applicable elements											Offset
Operand	туре													addressing
S	REAL	Constant						D				V		$\checkmark$
D	REAL							D				V		$\checkmark$

#### **Operand description**

S: Source operand

D: Destination operand

#### **Function description**

1. When the power flow is valid, get the COS value of

**S** (unit: radian), and assign the result to **D**.

2. When the operation result (*D*) is 0, the zero flag bit (SM180) will be set.

## Example



LD X0

COS D0 D10

When X0 is ON, get the COS value of (D0, D1) 3.14, and assign the result -0.999999 to (D10, D11).

## 6.4.10 TAN: Floating Point Number TAN Instruction



TAN

1.570000 D0

Example

#### **Operand description**

- S: Source operand
- D: Destination operand

#### **Function description**

1. When the power flow is									
valid, get the TAN value of <b>S</b>									
(unit: radian), and assign the									
result to <b>D</b> .									
2. When the operation result									
( <b>D</b> ) is not within (-1.701412e									
+ 038) ~ (1.701412e + 038),									
the carry flag bit (SM181) will									
be set. When the operation									

result is 0, the zero flag bit (SM180) will be set.

# When X0 is ON, get the TAN value of (D0, D1) 1.57, and assign the result 1255.848398 to (D10, D11).

1255.848. D10 ] LD X0

TAN D0 D10

## 6.4.11 POWER: Floating Point Number Exponentiation Instruction

LAD:										Applic	able to		IVC2 I	VC1		
(\$ <del>3)</del> [ POWER				(SI)]			POWOD 6		(SI)]	Influenced flag bit			Zero, carry, borrow			
IL: POW	ER (	S1) (S2)	)	(D)						Progra	am step	s	10			
Operand	Type		Applicable elemente							Offset					Offset	
Operand	туре			Applicable elements										addressing		
S1	REAL	Constant							D				V		V	
S2	REAL	Constant							D				V		$\checkmark$	
D	REAL								D				V		$\checkmark$	

#### **Operand description**

S1: Source operand 1

S2: Source operand 2

D: Destination operand

#### **Function description**

1. When the power flow is valid, get the *S2*th power of *S1*, and assign the result to *D*.

2. When the operation result

(D) is not within

(-1.701412e+038)~

(1.701412e+038), the carry flag bit (SM181) will be set.

3. When the operation result is 0, the zero flag bit (SM180) will be set.

#### Example



LD X0 POWER D0 D2 D10

When X0 is ON, get the (D2, D3)th power of (D0, D1) (i.e.  $55.0^{3.0}$ ), and assign the result 166375.0 to (D10, D11).

#### Note

1. When S1 = 0 and  $S2 \le 0$ , the system will report operand error, and the instruction will not be executed.

2. When *S1* < 0 and the mantissa of *S2* is not 0, the system will report operand error, and the instruction will not be executed.
## 6.4.12 LN: Floating Point Number LN Instruction

LAD:									Applical	ble to	IV	C2 IV	C1		
<del>(S)</del>		— <i>[[])</i> LN	]	<del>(s)</del>	$\vdash$	—(D)	LN	]	Influenc	ed flag	bit Ze	ero, car	ry, borr	ow	
IL: LN	(S)	(D)							Program	1 steps	7				
Operand	Type						Applic	ahla al	ements						Offset
operand	турс						Аррію		cificinto						addressing
S	REAL	Constant							D				V		$\checkmark$
D	REAL								D				V		$\checkmark$

## **Operand description**

- S: Source operand
- **D**: Destination operand

#### **Function description**

 When the power flow is valid, get the LN value of *S1*, and assign the result to *D*.
 When the operation result (*D*) is not within (-1.701412e+038) ~ (1.701412e+038), the carry flag bit (SM181) will be set.
 When the operation result is 0, the zero flag bit (SM180) will be set.

#### Example



When X0 is ON, get the LN value of (D0, D1) 1000.0, and assign the result 6.907755 to (D10, D11).

## 6.4.13 EXP: Floating Point Number EXP Instruction

LAD:									Applica	ole to	IV	C2 IV	C1		
1(3)	$( \leftarrow$	<u>-TD) EX</u>	2	-7 <del>(2)</del>	$\rightarrow$	-10	9237 (	-	Influenc	ed flag	bit Ze	ero, cari	ry, borr	ow	
IL: EXP	(S)	(D)							Progran	ı steps	7				
Operand	Туре						Applic	able ele	ements						Offset addressing
S	REAL	Constant							D				V		V
D	REAL								D				V		

## **Operand description**

S: Source operand

**D**: Destination operand

#### **Function description**

1. When the power flow is valid, get the EXP value of *S*, and assign the result to *D*.

2. When the operation result

(**D**) is not within

(-1.701412e+038) ~ (1.701412e+038), the carry

flag bit (SM181) will be set.

When the operation result is 0,

the zero flag bit (SM180) will

be set.

## Example



When X0 is ON, get the EXP value of (D0, D1) "10.0", and assign the result 22026.464844 to (D10, D11).

## 6.4.14 RSUM: Sum Floating Point Number Instruction

LAD:									Applica	ble to	IV	C2 IV	C1		
1-1	( <del>63) -</del> [	(ABNEET	(\$1	) <u>]</u>	/ (62)-	-[ 163	(99) (	(SI)7	Influenc	ed flag bi	it Ze	ero, cari	ry, borr	ow	
IL: RSU	VI (S1	(S2) (S2)	(1	D)					Progran	1 steps	9				
Operand	Type		Applicable elements												Offset
Operanu	туре		Applicable elements											addressing	
S1	REAL								D				V		V
S2	INT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSN	1 D				V		V
D	REAL								D				V		$\checkmark$

## **Operand description**

**S1**: Source operand, starting unit of summing

S2: Source operand, number of units to be summed upD: Destination operand, summing result

#### **Function description**

When the power flow is valid, the contents of  $S2 \times 2$  units starting with S1 will be summed up, and the floating point number summing result is assigned to the **D** unit.

## Note

1.  $0 \le S2 \le 255$ , or the system will report operand error.

2. When overflow occurs, the summing operation will stop.

#### Example



When X0 is ON, the floating point numbers of the  $5 \times 2$  units starting with **D0** will be summed up, and the result is assigned to (D100, D101). (D100, D101) = (D0, D1) + ... + (D8, D9) = 150001.5.

## 6.5 Data Converting Instruction

## 6.5.1 DTI: Double Integer To Integer Instruction

LAD:									Applical	ole to	IV	C2 IV	C1		
7 <del>(c)</del> /		- <b>(</b> D) 12	77	] <del>(</del> 8)	$\rightarrow \rightarrow$	<u></u> [0]	) 1217	-	Influenc	ed flag	bit Ze	ero, car	ry, borr	ow	
IL: DTI	(S)	(D)							Program	ı steps	6				
Operand	Typo						Applic	abla al	omonte						Offset
Operanu	Type						Applic		ements						addressing
S	DINT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	D	SD	С		V		V
D	INT			KnY	KnM	KnS	KnLM		D		С	Т	V	Z	$\checkmark$

## **Operand description**

S: Source operand

D: Destination operand

## **Function description**

When the power flow is valid, **S** will be converted from double integer to integer, and the result is assigned to **D**.

## Note

When **S** is not within  $-32768 \sim 32767$ , the system will report operand error and will not execute the conversion. **D** will not change.

## Example

XO		10000	10000		LD X0
	DTI	DO	D10	( <b>1</b>	
					DTI D0 D10

When X0 is ON, (D0, D1) 10000 will be converted from double integer to integer and the result 10000 is assigned to D10.

## 6.5.2 ITD: Integer To Double Integer Instruction

-															
LAD:									Applical	ble to	IV	C2 IV	C1		
1(3)	$\langle \cdot \rangle$	— <b>T</b> Q) X	01.	] <del>(8)</del>	$\rightarrow$ $\leftarrow$	-D	arr (	-	Influenc	ed flag	bit Ze	ero, car	ry, borr	ow	
IL: ITD	(S)	(D)							Progran	n steps	6				
Operand	Typo						Applic		omonte						Offset
Operanu	Type						Applic		ements						addressing
S	INT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	D	SD	С	Т	V	Z	$\checkmark$
D	DINT			KnY	KnM	KnS	KnLM		D		С		V		$\checkmark$

#### **Operand description**

- S: Source operand
- **D**: Destination operand **Function description**

## integer to double integer, and the result is assigned to $\boldsymbol{\textit{D}}.$

Exa	mple								
	xo		1.7.0.000	1000	1000		LD	X0	
2		-	ITD	DO	D10	1	ITD	D0	D10

When the power flow is valid, **S** will be converted from

When X0 is ON, D0 (1000) will be converted from integer to double integer, and the result 1000 is assigned to (D10, D11).

## 6.5.3 FLT: Integer To Floating Point Number Instruction

LAD:			_						Applica	ble to	IV	C2 IV	C1		
1(3)-1	$( \setminus $	- <b>T</b> Q) V(	Z Z	<del>(s)</del>	$\rightarrow $	D	T.17 (	-	Influenc	ed flag	bit Z	ero, car	ry, borr	ow	
IL: FLT	(S)	(D)							Progran	n steps	6				
Operand	Type						Appli	ام ماطح	omonte						Offset
Operanu	Type						Аррік		emento						addressing
S	INT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	D	SD	С	Т	V	Z	$\checkmark$
D	REAL								D				V		$\checkmark$
		•	-	•			•	•	•	•	-	•	•	•	•

## **Operand description**

S: Source operand

D: Destination operand

## **Function description**

When the power flow is valid, *S* will be converted from integer to floating point number, and the result is assigned to *D*.

## Example

XO		10005	10005.00	LD
	-[ FLT	DO	D10 ]	X0
				FLT
				D0
				D10
When VO is		(10005)	will be converted from in-	enante fleating pair

When X0 is ON, D0 (10005) will be converted from integer to floating point number, and the result 10005.0 is assigned to (D10, D11).

## 6.5.4 DFLT: Double Integer To Floating Point Number Instruction

LAD:									Applica	ble to		VC2 IV	C1		
4/4	100	oar Jh	÷,	<u>_</u>	O LAD	r . Jh <del>o</del>	é		Influence	ed flag	bit 2	Zero, car	ry, borro	w	
IL: DFL1	Г (S)	(D)							Program	n steps	7	,			
Operand	Туре		Applicable elements												Offset addressing
S	DINT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	I D	SD	С		V		$\checkmark$
D	REAL		D									V		$\checkmark$	

#### **Operand description**

S: Source operand

## D: Destination operand

#### **Function description**

When the power flow is valid, **S** will be converted from

double integer to floating point number, and the result is assigned to  $\pmb{D}.$ 

## Example



LD X0 DFLT D0 D10

When X0 is ON, (D0, D1) 100000 will be converted from integer to floating point number, and the result 100000.0 is assigned to (D10, D11).

## 6.5.5 INT: Floating Point Number To Integer Instruction

LAD:									Applica	ble to	IV	C2 IV	C1		
4/-	1 × 1	97 _/ <del> </del> #	4)	-	VM .	<u>Jaco</u>			Influenc	ed flag	bit Z	ero, car	ry, borr	ow	
IL: INT	(S)	(D)							Progran	1 steps	6				
Operand	Type						Annlic	ahle ele	ments						Offset
operand	турс						Аррію								addressing
S	REAL	Constant							D				V		$\checkmark$
D	INT			KnY	KnM	KnS	KnLM		D		С	Т	V	Z	$\checkmark$

Note

Example

#### **Operand description**

- S: Source operand
- D: Destination operand

#### **Function description**

floating point number to

integer, and the result is

2. This instruction affects the zero flag and borrow flag. When the conversion result is 0, the zero flag will be set. When the result rounds off the decimal fraction, the borrow flag will be set. the carry (overflow) flag will be

assigned to D.

## 1. When the power flow is valid, S will be converted from

	VO			10000 5	10000		LD 2	X0	
1Ç		-[	INT	D0	D10	1	INT	D0	D10

When **S** > 32767, **D**=32767. When **S**<-32768, **D** = -32768, and at the

same time the carry (overflow) flag bit will be set.

When X0 is ON, (D0, D1) 10000.5 will be converted from floating point number to integer and the result 10000 is assigned to D10.

set. 6.5.6 DINT: Floating Point Number To Double Integer Instruction

LAD:								Applica	ble to	IV	'C2 IV	C1		
100 1	<u>(</u> ]	ana A <del>l</del> a	9 / - <del>(</del>	0) W27	7			Influenc	ed flag	bit Ze	ero, cari	ry, borr	ow	
IL: DINT	(S)	(D)						Progran	1 steps	7				
Operand	Туре		Applicable elements											
S	REAL	Constant						D				V		
D	DINT		KnY	KnM	KnS	KnLM		D		С		V		$\checkmark$

#### **Operand description**

- S: Source operand
- D: Destination operand

## **Function description**

1. When the power flow is valid, S will be converted from floating point number to double integer, and the result is assigned to D.

2. When the conversion result is 0, the zero flag will be set. When the result rounds off the decimal fraction, the

borrow flag will be set. When the result exceeds the range of the double integer, the carry (overflow) flag will be set.

## Note

When **S** > 2147483647, **D** = 2147483647. When **S** < -2147483648, **D** = -2147483648, and at the same time the carry (overflow) flag will be set.

## Example

110					LD X	0	
xu	 DINT	100000. DO	D10	]	DINT	D0	D10

When X0 is ON, (D0, D1) 100000.5 will be converted from floating point number to double integer, and the result 100000 is assigned to (D10, D11).

## 6.5.7 BCD: Word To 16-Bit BCD Instruction

LAD:									Applica	ble to	IV	C2 IV	C1		
4/-	e de de	n Jacob	<u>_</u>	I.C.	V JA	÷.			Influenc	ed flag	bit Z	ero, car	ry, borr	ow	
IL: BCD	(S)	(D)							Progran	n steps	5				
Operand	Typo						Appli	cablo o	lomonte						Offset
Operand	Type						Аррік		lements						addressing
S	WORD	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	I D	SD	С	Т	V	Z	$\checkmark$
D	WORD			KnY	KnM	KnS	KnLM		D		С	Т	V	Z	$\checkmark$

## **Operand description**

*S*: Source operand. *S* ≤ 9999 *D*: Destination operand

## **Function description**

Example

Note

When the power flow is valid, *S* will be converted from integer to 16-bit BCD code, and the result is assigned to *D*.

## zxample

the instruction, and **D** will not change.

LD X0 BCD D0 D10

When X0 is ON, D0 0x0D05 (3333) will be converted from integer to 16-bit BCD code, and the result 0x3333 (13107) is assigned to D10.

1

When S > 9999, the system will report operand error and will not execute

## 6.5.8 DBCD: Double Word To 32-Bit BCD Instruction

LAD:									Applica	ble to	IV	/C2 IV	C1		
687 <i>0</i> ~	Shi Garrie	an an	(internet	-					Influenc	ed flag	bit Z	ero, car	ry, borr	ow	
IL: DBC	D (S)	(D)							Progran	n steps	7				
Operand	Type						Annl	icable	elements						Offset
operand	Type						Дри		sicilicities						addressing
S	DWORD	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	1 D	SD	С		V		
D	DWORD			KnY	KnM	KnS	KnLM		D		С		V		V

## **Operand description**

**S**: Source operand, **S** ≤ 99999999

D: Destination operand

## Function description

When the power flow is valid, **S** will be converted from integer to 32-bit BCD code, and the result is assigned to **D**.

#### Note

When *S* > 99999999, the system will report operand error and will not execute the instruction, and *D* will not change.

## Example



## 6.5.9 BIN: 16-Bit BCD To Word Instruction

LAD:									Applical	ole to	IV	C2 IV	C1		
asser.			Influenc	ed flag	bit Z	ero, car	ry, borr	ow							
IL: BIN	(S)	(D)							Program	ı steps	5				
Operand	Туре						Applic	able el	ements						Offset addressing
S	WORD	Constant	KnX	KnY	KnM	KnS	KnLM	KnSⅣ	I D	SD	С	Т	V	Z	
D	WORD			KnY	KnM	KnS	KnLM		D		С	Т	V	Z	V

#### **Operand description**

S: Source operand, the data format of S must match the BCD code format
D: Destination operand

#### **Function description**

When the power flow is valid, **S** will be converted from 16-bit BCD code to integer, and the result is assigned to **D**.

#### Note

When the data format of *S* does not match the BCD code format, the system will reports illegal operand and will not execute the instruction, and *D* will not change.

#### Example



When X0 is ON, D0 0x5555 (21845) will be converted from 16-bit BCD code to integer, and the result 0x15B3 (5555) is assigned to D10.

## 6.5.10 DBIN: 32-Bit BCD To Double Word Instruction

LAD:									Applica	ble to	IV	C2 IV	C1		
410-	an Distance			Influenc	ed flag	bit Z	ero, car	ry, borr	ow						
IL: DBIN	(S)				Progran	n steps	7								
Operand	Type						Annl	icahle e	lements						Offset
operand	турс						Дри		.iemento						addressing
S	DWORD	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	D	SD	С		V		V
D	DWORD			KnY	KnM	KnS	KnLM		D		С		V		V

## **Operand description**

S: Source operand

D: Destination operand

#### **Function description**

1. When the power flow is valid, **S** will be converted from 16-bit BCD code to double integer, and the result is assigned to **D**.

2. The data format of **S** must match the BCD code format.

## Note

When the data format of *S* does not match the BCD code format, the system will report operand error and will not execute the instruction, and D will not change.

#### Example

XO			2576980377	99999999	
	-F	DBTN	TIO	D10 1	

LD X0 DBIN D0 D10

When X0 is ON, (D0, D1) 0x99999999 (2576980377) will be converted from 32-bit BCD code to double integer, and the result 0x5F5E0FF (99999999) is assigned to (D10, D11).

## 6.5.11 GRY: Word To 16-bit Gray Code Instruction

LAD:									Applical	ole to	IV	C2 IV	C1		
Sector 1-	$\mathcal{S}_{n,n}^{(n)}(d^{n})$	- aster-	100	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -					Influenc	ed flag	bit Ze	ero, car	ry, borr	ow	
IL: GRY	(S)	(D)							Program	ı steps	5				
Operand	Type						Applic	ahle el	ements						Offset
operand	Турс						Аррію		cincino						addressing
S	WORD	Constant	KnX	KnY	KnM	KnS	KnLM	KnSN	1 D	SD	С	Т	V	Z	
D	WORD			KnY	KnM	KnS	KnLM		D		С	Т	V	Z	$\checkmark$

## **Operand description**

- S: Source operand
- **D**: Destination operand

## **Function description**

When the power flow is valid, **S** will be converted from integer to 16-bit Gray code, and the result is assigned to **D**.

#### Example



When X0 is ON, D0 0xAAAA (43690) will be converted form integer to 16-bit Gray code, and the result 0xFFFF (65535) is assigned to D10.

## 6.5.12 DGRY: Double Word To 32-Bit Gray Code Instruction

LAD:					~				Applical	ole to	IV	C2 IV	C1		
1000	Bailt and		and the second	887 <u>-</u>	and the second				Influenc	ed flag	bit Ze	ero, carı	ry, borr	ow	
IL: DGR	Y (S)	(D)							Program	ı steps	7				
Operand	Туре						Appli	icable	elements						Offset addressing
S	DWORD	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	1 D	SD	С		V		$\checkmark$
D	DWORD			KnY	KnM	KnS	KnLM		D		С		V		$\checkmark$

## **Operand description**

- S: Source operand
- D: Destination operand

#### **Function description**

When the power flow is valid, **S** will be converted from integer to 32-bit Gray code, and the result is assigned to **D**.

## Example



LD X0 DGRY D0 D10

When X0 is ON, (D0, D1) 0x888888888 (2290649224) will be converted from double integer to 32-bit Gray code, and the result 0xCCCCCCC (3435973836) is assigned to (D10, D11).

## 6.5.13 GBIN: 16-Bit Gray Code To Word Instruction

LAD:									Applica	ble to	IV	C2 IV	C1		
1 and the second	$\sigma_{\rm scale}$			Influenc	ed flag	bit Z	ero, car	ry, borr	ow						
IL: GBIN	(S)	(D)						Progran	n steps	5					
Operand	Type						ام مالم	omonte						Offset	
Operand	туре						Арріі		ementa						addressing
S	WORD	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	D	SD	С	Т	V	Z	V
D	WORD			KnY	KnM	KnS	KnLM		D		С	Т	V	Z	$\checkmark$

## **Operand description**

S: Source operand

#### Example

XO		65535	43690		LD X0
	-[ GBIN	DO	D10	1	GBIN D0 D10

# **D**: Destination operand **Function description**

When the power flow is valid, **S** will be converted from 16-bit Gray code to integer, and the result is assigned to **D**. When X0 is ON, D0 0xFFFF (65535) will be converted from 16-bit Gray code to integer, and the result 0xAAAA (43690) is assigned to D10.

## 6.5.14 DGBIN: 32-Bit Gray Code To Double Word Instruction

LAD:		er lasker		andronov	-				Applical	ole to	IN	/C2 IV	C1		
100	<del>, , ,</del> 728088019	1		araa noo	and the				Influenc	ed flag	bit Z	ero, car	ry, borr	ow	
IL: DG	BIN (S	) (D)							Program	ı steps	7				
Operand	Type						Applic	ام مامد	omonte						Offset
Operand	Type						Applic		emento						addressing
S	DWORD	Constant	KnX	KnY	KnM	KnS	KnLM	KnSⅣ	I D	SD	С		V		V
D	DWORD			KnY	KnM	KnS	KnLM		D		С		V		

## **Operand description**

- S: Source operand
- D: Destination operand

#### **Function description**

When the power flow is valid, *S* will be converted from 32-bit Gray code to double integer, and the result is assigned to *D*.

#### Example



When X0 is ON, (D0, D1) 0xCCCCCCC (3435973836) will be converted from 32-bit Gray code to double integer, and the result 0x88888888 (2290649224) is assigned to (D10, D11).

## 6.5.15 SEGI: Word To 7-Segment Encode

LAD:							Applicable to			C2 IV	C1				
(3)→ [0) SPE ] (3)→ [→−(0)] SEG ]									Influenced flag bit Zero, carry, borrow					ow	
IL: SEG	(S)	(D)							Program	1 steps	5				
Operand	Туре						Applic	able el	ements						Offset addressing
S	WORD	Constant	KnX	KnY	KnM	KnS	KnLM	KnSN	I D	SD	С	Т	V	Z	$\checkmark$
D	WORD			KnY	KnM	KnS	KnLM		D		С	Т	V	Z	$\checkmark$

instruction, and **D** will not change.

## **Operand description**

**S**: Source operand,  $S \le 15$ 

When the power flow is valid,

and the result is assigned to

#### D: Destination operand

## **Function description**

**S** will be converted from integer to 7-segment code,

D.

#### Example

Note

- 1	XO		15	113		LD X	(0	
	— <b>i</b> l}—[	SEG	DO	D10	1	SEG	D0	D10

When X0 is ON, D0 0x0F (15) will be converted from integer to 7-segment code, and the result 0x71 (113) is assigned to D10.

When S>15, the system reports illegal operand and will not execute the

## 6.5.16 ASC: ASCII Code Conversion Instruction

LAD:		_				_			Applica	ble to	IV	C2 IV	C1		
Ser -	mar ,	all an	JONDE	See.	-	÷			Influenc	ed flag b	oit Ze	ero, car	ry, borr	ow	
IL: ASC	(S1~	S8) (D)	)						Program	n steps	19	)			
Operand	Туре						Appli	cable e	elements						Offset addressing
S1	WORD	Constant													
S2	WORD	Constant													
S3	WORD	Constant													
S4	WORD	Constant													
S5	WORD	Constant													
S6	WORD	Constant													
S7	WORD	Constant													
S8	WORD	Constant													
D	WORD								D		С	Т	V	Z	

## **Operand description**

*S1* ~ *S8* : Source operand (If the number is less than 8, the remaining elements shall be filled with 0)

Only characters with ASCII code of  $0x21 \sim 0x7E$  are supported (input through keyboard, if the number is less than 8, fill in with 0X00)

#### D: destination operand

## **Function description**

When the power flow is valid, the string  $S1 \sim S8$  will be converted to ASCII code, and the result is assigned to the elements starting with **D**. When SM186 isOFF, the high/low byte of each D element will store two ASCII code data. When SM186 is ON, the low byte of each D element will store 1 ASCII code data.

## Example



LD M0

ASC 12345678 D0

When M0 is ON, execute the ASCII conversion, and the data will be stored in two modes:

- When SM186 is OFF, the execution result is: D0=0x3231, D1=0x3433, D2=0x3635, D3=0x3837.
- When SM186 is ON, the execution result is: D0=0x31, D1=0x32, D2=0x33, D3=0x34, D4=0x35, D5=0x36, D6=0x37, D7=0x38.

## 6.5.17 ITA: Hexadecimal Integer-ASCII Conversion Instruction

LAD:	LAD:										IV	IVC2 IVC1						
- source	+ <del>1 - 120 - 120 - 120 - 120 - 120 - 120 - 1</del>								Influenced flag bit Zero, carry,					w				
IL: ITA	(S1)	(D)	(S2)						Progran	n steps	7							
Operand	Туре		Applicable elements										Offset addressing					
S1	WORD	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	D	SD	С	Т	V	Z	V			
D	WORD			KnY	KnM	KnS	KnLM		D		С	Т	V	Z	V			
S2	WORD	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	D	SD	С	Т	V	Z	V			

## **Operand description**

S1: Conversion source, hexadecimal data

D: destination operand.

**S2**: number of ASCII codes,  $1 \le S2 \le 256$ 

## **Function description**

When the power flow is valid, the hexadecimal data starting with *S1* element will be converted to *S2* ASCII codes, and the result is assigned to the elements starting with *D*. When SM186 is OFF, the high/low byte of each *D* element will store two ASCII code data. When SM186 is ON, the low byte of each *D* element will store 1 ASCII code data.

## Note

1. When S1 and D use Kn addressing, Kn=4.

2. When **S2** is not within 1 ~ 256, the system will report operand error and will not execute the instruction, and **D** will not change.

3. If **S1** is a constant, **S2** will be regarded as 4 by default when  $S2 \ge 4$ , and the system will not report operand error.

## Example

MO 14393 ____[ ITA 16#9876 D20 8 ]

Source data: 0x9876

LD M0

ITA 16#9876 D20 6

When M0 is ON, execute ITA conversion, the data will be stored in two modes:

- If SM186=OFF, the execution result is: D20 = 0x3839, D21 = 0x3637.
- If SM186=ON, the execution result is D20 = 0x39, D21 = 0x38, D22 = 0x37, D23 = 0x36.

6.5.18	ATI: ASCII-Hexadecimal	Integer Conve	ersion Instruction
0.0.10		integer conve	

LAD:				Applicable to			IVC2 IVC1								
and and a second	and all the state of the second second								Influenced flag bit Zero, carry, bor					ow	
IL: ATI	(S1)	(D)	(S2)						Program steps 7						
Operand	Type		Applicable elements												Offset
operand	турс						Аррію		cincino						addressing
S1	WORD	Constant	KnX	KnY	KnM	KnS	KnLM	KnSⅣ	I D	SD	С	Т	V	Z	$\checkmark$
D	WORD			KnY	KnM	KnS	KnLM		D		С	Т	V	Z	$\checkmark$
S2	WORD	Constant	KnX	KnY	KnM	KnS	KnLM	KnSⅣ	I D	SD	С	Т	V	Z	$\checkmark$

## **Operand description**

**S1**: conversion source, ASCII code data  $0x30 \le S1 \le 0x39$  or  $0x41 \le S1 \le 0x46$  (when SM186 is OFF, the high byte and low byte of **S1** shall both be within this range)

D: destination operand.

**S2**: Number of ASCII codes;  $1 \le S2 \le 256$ 

## **Function description**

When the power flow is valid, the **S2** ASCII code data starting with **S1** element will be converted to hexadecimal data, and the result will be stored in the elements starting with **D** in every 4 bits. When SM186 is OFF, the high/low byte of each **D** element will store two ASCII code data. When SM186 is ON, the low byte of each **D** element will store 1 ASCII code data.

## Note

1. When *S1* is not within 0x30 ~ 0x39 or 0x41 ~ 0x46, or *S2* is not within 1 ~ 256, the system will

## 6.6 Word Logic Operation

## 6.6.1 WAND: AND Word Instruction

LAD: Applicable to IVC2 IVC1 Influenced flag bit IL: WAND (S2) **Program steps** 7 (S1) (D) Offset Operand Туре Applicable elements addressing WORD Constant KnX KnY KnS KnLM KnSM S1 KnM D SD С т V Ζ  $\sqrt{}$ WORD Constant KnX KnY Ζ  $\sqrt{}$ S2 KnM KnS KnLM KnSM D SD С т V 1 WORD KnLM т V Ζ D KnY KnM KnS D С

## **Operand description**

S1: Source operand 1

- S2: Source operand 2
- D: destination operand

## **Function description**

When the power flow is valid, **S1** and **S2** will conduct logic

AND operation, and the result is assigned to  $\pmb{D}.$ 

## Example

XO 46739 37678 37378 [WAND DO D1 D10 ] LD X0 WAND D0 D1 D10

When X0 is ON, D0 2#1011011010010011 (46739) and D1 2#100100101010101110 (37678) will conduct logic AND operation, and the result 2#1001001000000010 (37378) is assigned to D10.

report operand error and will not execute the instruction, and **D** will not change.

3. If **S1** is a constant, **S2** will be regarded as 2 by default when SM186 is OFF and **S2**  $\geq$  2, or as when SM186 is ON and **S2**  $\geq$  1, and the system will not report operand error.

## Example

L	MO [	ATI	14648 D10	34370 D30	4	]
LD	M0					

ATI D10 D30 4

Source data: D10 = 0x3938, D11 = 0x3736, D12 = 0x3534, D13 = 0x3332

When M0 is ON, the ATI conversion will be executed. According to the data storing mode, the results are as follows:

- If SM186 is OFF, the result is: D30 = 0x8967.
- If SM186 is ON, the result is: D30=0x8642.

## 6.6.2 WOR: OR Word Instruction

LAD:	AD:									Applicable to					
1 (160									nfluence	d flag bi	t				
IL: WOR	(S1)	(S2)	(D)						Program	steps	7				
Operand	Type		Annlicable elements											Offset	
Operanu	Type						Арріі		lements						addressing
S1	WORD	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	I D	SD	С	Т	V	Z	$\checkmark$
S2	WORD	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	I D	SD	С	Т	V	Z	$\checkmark$
D	WORD			KnY	KnM	KnS	KnLM		D		С	Т	V	Z	$\checkmark$

## **Operand description** *S1*: Source operand 1

#### Example

X0 46739 37678 47039 LD X0 WOR D0 D1 D10 J D10 LD X0 WOR D0 D1

Source operand 2D: destination operand

## **Function description**

When the power flow is valid, **S1** and **S2** will conduct logic OR operation, and the result is assigned to D.

2.0
When X0 is ON, D0 2#1011011010010011 (46739) and D1
2#1001001100101110 (37678) will conduct logic OR operation, and the result
2#1011011110111111 (47039) is assigned to D10.

## 6.6.3 WXOR: Exclusive-OR Word Instruction

LAD:								Applicab	le to	IVC	2 IVC1				
and the second second	Lating Mar Style - alter Style										t				
IL: WXOR (S1) (S2) (D)										n steps	7				
Operand	Type														Offset
operand	турс						Дррі		icinenta						addressing
S1	WORD	Constant	KnX	KnY	KnM	KnS	KnLM	KnSN	I D	SD	С	Т	V	Z	$\checkmark$
S2	WORD	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	I D	SD	С	Т	V	Z	$\checkmark$
D	WORD		KnY KnM KnS KnLM						D		С	Т	V	Z	$\checkmark$

#### **Operand description**

S1: Source operand 1

S2: Source operand 2

D: destination operand

#### **Function description**

When the power flow is valid, *S1* and *S2* will conduct logic exclusive OR operation, and the result is assigned to *D*.

#### Example



When X0 is ON, D0 2#1011011010010011 (46739) and D1 2#10010011010101110 (37678) will conduct logic exclusive OR operation, and the result 2#0010010110111101 (9661) is assigned to D10.

LD

]

X0

WINV D0 D1 D10

## 6.6.4 WINV: NOT Word Instruction

LAD:	AD:									le to	IVC	2 IVC1			
1	Sector 10	Sas	199 <u>9-1</u> 9			I	nfluence	d flag bi	t						
IL: WIN	/ (S)	(D)							Program	n steps	5				
Operand	Turno						Annli	ooblo o	lomonto						Offset
Operanu	туре						Applic	cable e	lements						addressing
S	WORD	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	1 D	SD	С	Т	V	Z	$\checkmark$
D	WORD		KnY KnM KnS KnLM								С	Т	V	Z	$\checkmark$

WINV

46739

DO

#### **Operand description**

S: Source operand

#### Example

XO

D: destination operand

## **Function description**

When the power flow is valid, conduct logic NOT operation on *S*, and assign the result to *D*.

Wher	n X0 is ON,	conduct I	ogic NOT	operation	on D0	(46739),	and	assign	the
result	18796 to [	D10.							

18796

D10

## 6.6.5 DWAND: AND Double Word Instruction

LAD:							_	4	pplicabl	le to	IVC2	2 IVC1		
and the second	ann -	al and a second	Sarah	1. 1. 1. 1. <u>1. 1.</u> 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	100 - No.	N Spinister	÷	l	nfluence	d flag bi	t			
IL: DWA	ND (S1	) (S1)	(D)					Program	n steps	10				
Operand	Туре			icable e	lomonte					Offset				
Operanu	туре						Аррі		entents					addressing
S1	DWORD	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	D	SD	С		V	$\checkmark$
S2	DWORD	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	D	SD	С		V	$\checkmark$
D	DWORD			KnY	KnM	KnS	KnLM		D		С		V	$\checkmark$

#### **Operand description**

S1: Source operand 1

S2: Source operand 2

D: destination operand

## Function description

When the power flow is valid, **S1** and **S2** will conduct logic AND operation, and the result is assigned to **D**.

#### Example

X0 2997282386 976957747 841097234 LD X0 D0 D2 D10 ] DWAND D0 D2 D10

When X0 is ON, (D0, D1) 2#101100101001101100110010010 (2997282386) and (D2, D3) 2#00111010001110110010010010011 (976957747) will conduct the logic AND operation, and the result 2#0011001000100010001000000010010 (841097234) is assigned to (D10, D11).

## 6.6.6 DWOR: OR Double Word Instruction

LAD:							_		Applicat	ole to	ľ	VC2	IVC1	
م <u>ر</u> سینی کار کر	- Aller	al and a second	(all)	2/-		and the second	<u></u>		Influence	ed flag b	oit			
IL: DWC	DWOR (S1) (S2) (D)									n steps	10	)		
Operand	Operand Type Apr								elements					Offset addressing
S1	DWORD	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	D	SD	С		V	V
S2	DWORD	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	D	SD	С		V	$\checkmark$
D	DWORD			KnY	KnM	KnS	KnLM		D		С		V	$\checkmark$

#### **Operand description**

#### Example

S1: Source operand 1

S2: Source operand 2

D: destination operand

## **Function description**

When the power flow is valid, S1 and S2 will conduct logic OR operation, and the result is assigned to **D**.

2997282386 976957747 3133142899 --[ DWOR DO D2 D10 ] DWOR D0 D2 D10 When X0 is ON, (D0, D1) 2#101100101010011011001001010010 (2997282386) and (D2, D3) 2#0011101000111011001100100100110011 (976957747) will conduct logic OR operation, and the result 2#10111010101111111111011101110011 (3133142899) is assigned to (D10, D11).

LD X0

## 6.6.7 DWXOR: Exclusive-OR Double Word Instruction

LAD:									Applicat	ole to	IN	/C2	IVC1	
and the second	- Martin	No. Contraction	1.00	der -	1890	r aitig	and the second		Influenc	ed flag k	oit			
IL: DWX	OR (S1	) (S2)	(D	))					Progran	1 steps		10		
Operand	Type					Annl	icable e	lements					Offset	
oporana	1990						7.666							addressing
S1	DWORD	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	D	SD	С		V	$\checkmark$
S2	DWORD	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	D	SD	С		V	$\checkmark$
D	DWORD			KnY	KnM	KnS	KnLM		D		С		V	$\checkmark$

## **Operand description**

S1: Source operand 1

S2: Source operand 2

D: destination operand

## **Function description**

When the power flow is valid, S1 and S2 will conduct logic exclusive OR operation, and the result is assigned to **D**.

#### Example

						LD	X0	
XO	 DWXOR	2997282386 DO	976957747 D2	2292045665 D10	1	DWXOR	D0	D2
	12/401022	12121	2577	102.202		D10		

When X0 is ON, (D0, D1) 2#10110010101001101110011001010010 (2997282386) and (D2, D3) 2#00111010001110110011000100110011 (976957747) will conduct logic exclusive OR operation, and the result 2#1000100010011101110101110100001 (2292045665) is assigned to (D10, D11).

LD X0

## 6.6.8 DWINV: NOT Double Word Instruction

LAD:								F	pplica	ole to	IVC2	IVC1		
		all and the second s	1003	nist free of	an Price			l	nfluenc	ed flag	bit			
IL: DWI	NV (S)	(D)							Progra	m steps	7			
Operand	Type						Applic	able e	lomont					Offset
Operanu	туре						Аррік		sement	5				addressing
S	DWORD	Constant	KnX	KnY	KnM	KnS	KnLM	KnSI	U N	SD	С		V	$\checkmark$
D	DWORD			KnY	KnM	KnS	KnLM		D		С		V	$\checkmark$

2997282386 1297684909

#### **Operand description**

S: Source operand

#### Example

**D**: destination operand

## Function description

When the power flow is valid, logic NOT operation will be conducted on **S**, and the result is assigned to **D**. 
 DWINV
 D0
 D10
 D

 When X0 is ON, logic NOT operation will be conducted on (D0, D1)
 2#1011001010010100110010010 (2997282386), and the result

 2#010011010101010001100110011001101101 (1297684909) is assigned to (D10, D11).

## 6.7 Shift / Rotate Instruction

## 6.7.1 ROR: 16-Bit Circular Shift Right Instruction

LAD:								A	pplicab	ole to		VC2 I	/C1		
	Landsteine)	all a second	(inter-	10	an a	generative and the second	2	Ir	fluence	ed flag k	oit (	Carry fla	ng SM18	61	
IL: ROR (S1) (D) (S2)									rogram	n steps		7			
Operand	Operand Type Applic								ments						Offset addressing
S1	WORD	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	D	SD	С	Т	V	Ζ	$\checkmark$
D	WORD			KnY	KnM	KnS	KnLM		D		С	Т	V	Ζ	$\checkmark$
S2	INT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	D	SD	С	Т	V	Ζ	$\checkmark$

## **Operand description**

*S1*: Source operand 1*D*: destination operand*S2*: Source operand 2

## **Function description**

When the power flow is valid, the data of *S1* will rotate rightward for *S2* bits, and the result is assigned to *D*. At the same time the highest bit of the *S2* bits will be stored into the carry flag (SM181).

## Note

1. **S2** ≥ 0.

2. When S1 uses Kn addressing, Kn must be equal to 4.

## Example



When M0 is ON, D0 2#1100110110010101 (52629) rotates rightward for 3 bits, and the result 2#1011100110110010 (47538) is assigned to D10. The highest bit of the 3 bits is stored into the carry flag. SM181 is ON.

## 6.7.2 ROL: 16-Bit Circular Shift Left Instruction

LAD:								Арр	licabl	e to	IVC	2 IVC1			
- States	- ARC	and the second	- Salt	e	1988.34		2	Influ	uence	d flag bi	t Car	ry			
IL: ROL	(S1)	(D)	(S2	)				Pro	ogram	steps	7				
Operand	Туре						Applica	able elem	ents						Offset
•															addressing
S1	WORD	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	D	SD	С	Т	V	Z	$\checkmark$
D	WORD			KnY	KnM	KnS	KnLM		D		С	Т	V	Ζ	$\checkmark$
S2	INT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	D	SD	С	Т	V	Z	$\checkmark$

## **Operand description**

S1: Source operand 1

D: destination operand

S2: Source operand 2

#### **Function description**

When the power flow is valid, the data of *S1* will rotate leftward for *S2* bits, and the result is assigned to D. At the same time the lowest bit of the *S2* bits will be stored into the carry flag SM181.

#### Note

1. **S2** ≥ 0.

2. When S1 uses Kn addressing, Kn must be equal to 4.

## Example



When M0 is ON, D0 2#1100110110010101 (52629) rotates leftward for 15 bits, and the result 2#1110011011001010 (59082) is assigned to D10. The final bit will be stored in the carry flag bit. SM181 is OFF.

## 6.7.3 RCR: 16-Bit Carry Circular Shift Right Instruction

LAD:									Applical	ole to	P	/C2 IV	/C1		
- when	ALP !!	Care Street	1	<u>. ~</u>	ALC: NO.	ففغض لمدرر	~		Influenc	ed flag k	oit C	arry			
IL: RCR	L: RCR (S1) (D) (S2)									n steps	7				
Operand	Operand Type Applic														Offset addressing
S1	WORD	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	I D	SD	С	Т	V	Z	√
D	WORD			KnY	KnM	KnS	KnLM		D		С	Т	V	Z	$\checkmark$
S2	INT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	I D	SD	С	Т	V	Z	

## **Operand description**

S1: Source operand 1

D: destination operand

S2: Source operand 2

## **Function description**

When the power flow is valid, S1 data and the carry flag (SM181) will together rotate rightward for S2 bits, and the result is assigned to **D**.

## Note

1. **S2** ≥0.

2. When S1 uses Kn addressing, Kn must be equal to 4.

#### Example RCR -[



When M0 is ON, D0 2#1100110110010101 (52629) and the carry SM181 (OFF) will rotate rightward for 5 bits, and the result 2#0101011001101100 (22124) is assigned to D10. SM181 = ON.

## 6.7.4 RCL: 16-Bit Carry Circular Shift Left Instruction

LAD:									Applicat	ole to		IVC2 I	VC1		
- States	All	a set inter	4	atte	- 18 <b>8</b>	Ster and	and in the second		Influence	ed flag b	oit	Carry			
IL: RCL	(S1)	( <i>D</i> )	(S2)						Program	ı steps		7			
Operand	CL     (S1)     (D)     (S2)       Operand     Type     Applic														Offset addressing
S1	WORD	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	I D	SD	С	Т	V	Ζ	V
D	WORD			KnY	KnM	KnS	KnLM		D		С	Т	V	Z	$\checkmark$
S2	INT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	D	SD	С	Т	V	Ζ	$\checkmark$

#### **Operand description**

#### Example

S1: Source operand 1D: destination operand

**S2:** Source operand 2

## **Function description**

When the power flow is valid, *S1* data and the carry (SM181) will together rotate leftward for *S2* bits, and the result is assigned to *D*.

## Note

1. **S2** ≥ 0.

2. When S1 uses Kn addressing, Kn must be equal to 4. M0 52629 59082 LD M0 LD M0 RCL D0 D10 16 RCL D0 D10 16



When M0 is ON, D0 2#1100110110010101 (52629) and the carry SM181 (ON) will rotate leftward for 16-bits, and the result 2#1110011011001010 (59082) is assigned to D10. SM181=ON.

## 6.7.5 DROR: 32-Bit Circular Shift Right Instruction

LAD:									Applic	abl	e to	IVC	2 IVC1			
1990		~ 20]	~	and a start	2 10	an c	100J		nfluer	ice	d flag bit	Car	ry			
IL: DRO	DROR (S1) (D) (S2)									ram	n steps	9				
Operand	Operand Type Appli									nts						Offset addressing
S1	DWORD	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	1 D	)	SD	С		V		$\checkmark$
D	DWORD			KnY	KnM	KnS	KnLM		D	)		С		V		$\checkmark$
S2	INT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSI/	1 D	)	SD	С	Т	V	Ζ	$\checkmark$

## **Operand description**

S1: Source operand 1

```
D: destination operand
```

```
S2: Source operand 2
```

## **Function description**

When the power flow is valid, the data of *S1* will rotate rightward for *S2* bits, and the result is assigned to *D*. At the same time the highest bit of the *S2* bits will be stored into the carry flag bit SM181.

## 1. **S2** ≥ 0.

Note

2. When S1 uses Kn addressing, Kn must be equal to 8.

## Example



1. When M0 is ON, D0 (D1) 2#10110011100110001001110010101010 (3013123244) will rotate rightward for 7 bits, and the result 2#010110010110011100100100111001 (1499935033) is assigned to (D10, D11). The final bit is stored into the carry flag bit. SM181 = OFF. 2. Please refer to the ROR instruction illustration.

## 6.7.6 DROL: 32-Bit Circular Shift Left Instruction

LAD:								4	pplicab	le to	IVC	2 IV	C1		
	E DRC	(SI) (SI)	]	-  <i>(</i> <del>))</del>	[	DRØ <u>52</u> )	(SD]	I	nfluence	d flag bi	t Car	ry			
IL: DRO	L (S1)	(D)	(S2	?)			Program	n steps	9						
Operand	Туре		(D) (S2)   Program steps   9 Applicable elements   a												Offset addressing
S1	DWORD	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	D	SD	С		V		
D	DWORD			KnY	KnM	KnS	KnLM		D		С		V		$\checkmark$
S2	INT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	D	SD	С	Т	V	Z	

#### **Operand description**

## Note

**S1:** Source operand 1

D: destination operand

## **S2:** Source operand 2

## **Function description**

When the power flow is valid, the data of **S1** will rotate leftward for **S2** bits, and the result is assigned to D. At the same time the lowest bit of the **S2** bits will be stored into the carry flag bit SM181.

## 1. **S2** ≥ 0.

2. When S1 uses Kn addressing, Kn must be equal to 8.

ExampleM03013123244 753280811M0D0D0D1030BOD0D10D0D10D0D10D0D10D0D10D0D10D0D10D0D10D0D10D0D10D0D10D0D10D0D10D0D10D0D10D111001100110010010011100101011<math>D11The final bit is stored into the carry flag bit. SM181=ON.<math>D0D10D10D10D10D10D10D10D10D10D10D10D10D10D10D10D10D10D10D10D10D10D10D10D10D10D10D10D10D10D10D10D10D10D10D10D10D10D10D10D10D10D10D10D10D10D10D10D10D10D10D10D10D10D10D10D10D10D10D10D10D10D10<

## 6.7.7 DRCR: 32-Bit Carry Circular Shift Right Instruction

LAD:									Applica	ble to		IVC	2 IVC1			
- 44	-[ 11112	V (SUJ	-/	<u>P - 1</u>	- DR	Æ?	67)]]-		nfluen	ed fla	g bit	Car	ry			
IL: DRC	R (S1)	(D)			Progra	m ster	s	9								
Operand	Operand Type Apr									s						Offset addressing
S1	DWORD	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	1 D	SI	)	С		V		$\checkmark$
D	DWORD			KnY	KnM	KnS	KnLM		D			С		V		$\checkmark$
S2	INT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	1 D	S	)	С	Т	V	Z	$\checkmark$

## **Operand description**

S1: Source operand 1D: destination operandS2: Source operand 2

## **Function description**

When the power flow is valid, *S1* data and the carry SM181 will together rotate rightward for *S2* bits, and the result is assigned to *D*.

## Note

1. **S2** ≥ 0.

2. When S1 uses Kn addressing, Kn must be equal to 8.

#### Example

M0 3013123244 722891539 ↓ DRCR D0 D10 11 ]

LD M0 DRCR D0 D10 11

1. When M0 is ON, (D0, D1) 2#10110011100110001001110010101010 (3013123244) and the carry SM181 (OFF) will rotate rightward for 11 bits, and the result 2#001010110001011001100010011 (722891539) is assigned to (D10, D11). SM181=ON.

2. Please refer to the RCR instruction illustration.

6.7.8	DRCL: 32-Bit Carry	y Circular Shift Left	Instruction

LAD:		_		Applicable to				2 IVC1								
	Latter March and Latter - and a coup								Influ	ience	d flag bit	Car	ry			
IL: DRC			Pro	gram	steps	9										
Operand	Туре						Appl	icable	e elements							Offset addressing
S1	DWORD	Constant	KnX	KnY	KnM	KnS	KnLM	KnSN	Λ	D	SD	С		V		
D	DWORD			KnY	KnM	KnS	KnLM			D		С		V		
S2	INT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSN	Λ	D	SD	С	Т	V	Z	

## **Operand description**

## Note

S1: Source operand 1D: destination operand

## S2: Source operand 2

## **Function description**

When the power flow is valid, the *S1* data and the carry SM181 will together rotate leftward for S2 bits, and the result is assigned to *D*.

•		~~	~	~
l	•	52	2	υ.

2. When S1 uses Kn addressing, Kn must be equal to 8.

## Example



2. Please refer to the RCL instruction illustration.

## 6.7.9 SHR: 16-Bit Shift Right Word Instruction

LAD:	-		4	Applicabl	le to	IVC	2 IVC1								
1999 - 2										d flag bi	it				
IL: SHR (S1) (D) (S2)									Program	n steps	7				
Onorond	Turno						Applie	abla a	Iomonto						Offset
Operanu	туре						Applic	able e	lements						addressing
S1	WORD	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	1 D	SD	С	Т	V	Z	$\checkmark$
D	WORD			KnY	KnM	KnS	KnLM		D		С	Т	V	Z	$\checkmark$
S2	INT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	1 D	SD	С	Т	V	Z	

## **Operand description**

S1: Source operand 1

D: destination operand

S2: Source operand 2

## **Function description**

When the power flow is valid, the data of *S1* will shift rightward for *S2* bits, and the result is assigned to *D*.

## Note

1. **S2** ≥ 0.

2. When S1 uses Kn addressing, Kn must be equal to 4.

## Example



When M0 is ON, D0 2#011110101101100 (31452) shifts rightward for 5 bits, and the result 2#0000001111010110 (982) is assigned to D10.

## 6.7.10 SHL: 16-Bit Shift Left Instruction

LAD:	AD:								Applical	ole to	IVC	2 IVC1			
1000-2									nfluenc	ed flag b	it				
IL: SHL	(S1)	(D)	(S2)						Progra	n steps	7				
Operand	Туре						Applie	cable e	lements						Offset addressing
S1	WORD	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	1 D	SD	С	Т	V	Z	
D	WORD			KnY	KnM	KnS	KnLM		D		С	Т	V	Z	
S2	INT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	1 D	SD	С	Т	V	Z	

#### **Operand description**

S1: Source operand 1

D: destination operand

**S2:** Source operand 2

## Function description

When the power flow is valid, the data of *S1* will shift leftward for *S2* bits, and the result is assigned to *D*.

#### Note

 S2 ≥0.
 When S1 uses Kn addressing, Kn must be equal to 4.

#### Example





When M0 is ON, D0 2#011110101101100 (31452) shifts leftward for 7 bits, and the result 2#0110111000000000 (28160) is assigned to D10.

## 6.7.11 DSHR: 32-Bit Shift Right Instruction

LAD:								Ар	olicab	le to	r	VC2 IV	C1		
-1 12-										ed flag k	oit				
IL: DSHR (S1) (D) (S2)									ogram	ı steps	9				
Operand	Туре						Applical	ble elen	nents						Offset
S1	DWORD	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	D	SD	С		V		√
D	DWORD			KnY	KnM	KnS	KnLM		D		С		V		
S2	INT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	D	SD	С	Т	V	Z	$\checkmark$

## **Operand description**

*S1*: Source operand 1*D*: destination operand*S2*: Source operand 2

## **Function description**

When the power flow is valid, the data of *S1* will shift rightward for *S2* bits, and the result is assigned to *D*.

## Note

1. **S2** ≥0.

2. When S1 uses Kn addressing, Kn must be equal to 8.

## Example

	MO			193938:	420 1893927			LD M0
-	1 I	-[	DSHR	DO	D10	10	1	DSHR D0 D10 10

1. When M0 is ON, (D0, D1) 2#01110011100110001001110010101010 (1939381420) shifts rightward for 10 bits, and the result 2#0000000000111001110011000100111 (1893927) is assigned to (D10, D11).

2. Please refer to the SHR instruction illustration.

## 6.7.12 DSHL: 32-Bit Shift Left Instruction

LAD:			Ар	Applicable to			VC2	IVC1								
<b>−</b>   #	(\$\$) [ DSH62) (S7) [ (\$\$) [ (\$\$) [ (\$\$) [ (\$\$) [ (\$\$) [ (\$\$) [ (\$\$) [ (\$\$) [ (\$\$) [ (\$\$) [ (\$\$) [ (\$\$) [ (\$\$) [ (\$\$) [ (\$\$) [ (\$\$) [ (\$\$) [ (\$\$) [ (\$\$) [ (\$\$) [ (\$\$) [ (\$\$) [ (\$\$) [ (\$\$) [ (\$\$) [ (\$\$) [ (\$\$) [ (\$\$) [ (\$\$) [ (\$\$) [ (\$\$) [ (\$\$) [ (\$\$) [ (\$\$) [ (\$\$) [ (\$\$) [ (\$\$) [ (\$\$) [ (\$\$) [ (\$\$) [ (\$\$) [ (\$\$) [ (\$\$) [ (\$\$) [ (\$\$) [ (\$\$) [ (\$\$) [ (\$\$) [ (\$\$) [ (\$\$) [ (\$\$) [ (\$\$) [ (\$\$) [ (\$\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [ (\$) [() [ (\$) [ (\$) [() [() [ () [() [() [() [() [() [() [									ed flag b	oit					
IL: DSH	L (S1)	(D)	(S2)					Pro	gram	steps	9					
Operand	Туре		Applicable elements												Offset addressing	
S1	DWORD	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	D	SD	С		V			
D	DWORD			KnY	KnM	KnS	KnLM		D		С		V			$\checkmark$
S2	INT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	D	SD	С	Т	V	Z	2	$\checkmark$

## **Operand description**

## Example

S1: Source operand 1 D: destination operand

S2: Source operand 2

## **Function description**

When the power flow is valid, the data of S1 will shift leftward for **\$2** bits, and the result is assigned to **D**.

## Note

1. **S2** ≥ 0. 2. When S1 uses Kn addressing, Kn must be equal to 8.

č	MO	
4.	1.1	Ē

LD M0 1939381420 1314258944 15 -[ DSHL ] DSHL D0 D10 15 DO D10 - -

1. When M0 is ON, (D0, D1) 2#011100111001001001001010101010 (1939381420) shifts leftward for 15 bits, and the result

D11).

2. Please refer to SHL instruction illustration.

#### LAD: Applicable to IVC2 IVC1 1321324 1871834 イレンボ ムモンド 404 Influenced flag bit 9 IL: SFTR (S1) (D) (S2) (S3) **Program steps** Offset Operand Туре Applicable elements addressing BOOL Х S1 Υ Μ S LM SM С т $\sqrt{}$ D BOOL Υ Μ S LM С Т $\sqrt{}$ $\sqrt{}$ S2 INT Constant KnX KnY KnM KnS KnLM KnSM D SD С Т V Ζ $\sqrt{}$ Constant KnX KnY KnM KnS KnLM V Ζ S3 INT KnSM D SD С т

## 6.7.13 SFTR: Shift Right Byte Instruction

#### **Operand description**

S1: Source operand 1

D: destination operand

S2: Source operand 2

S3: Source operand 3

#### **Function description**

When the power flow is valid, **S2** elements starting with **D** will move rightward for **S3** units, and the **S3** elements at the rightmost side will be discarded. At the same time, the contents of **S3** elements starting with **S1** will be filled into the left end of the string.

#### Note

1. The elements with smaller SN are at the right, and the elements with larger SN are at the left.

2. **S2** ≥ 0.

3. **S3** ≥ 0.







1. When M0 is ON, the contents of 10 elements starting with M10 will move rightward for 3 bits, and rightmost three elements  $M10 \sim M12$  will be discarded. At the same time, the contents of the 3 elements starting with X0 will be filled into the left end of the string.

2. Before the execution: X0 = 1, X1 = 0, X2 = 1, M10 = 0, M11 = 1, M12 = 1, M13 = 0, M14 = 0, M15 = 1, M16 = 0, M17 = 0, M18 = 0, M19 = 1.

3. After the execution: the contents of X0 to X2 remain unchanged, M10 = 0, M11 = 0, M12 = 1, M13 = 0, M14 = 0, m15 = 0, m16 = 0, m17 = 1, m18 = 0, m19 = 1.

## 6.7.14 SFTL: Shift Left Byte Instruction

LAD:									Applicat	ole to	N	C2 IV	C1		
( <b></b> \$?)⊢	[ 8	<b>629</b> . (S.	SET)	( <del>)(</del> 53)	Influence	ed flag k	oit								
IL: SFTL	. (S1)	(D)	(S2)	(S	3)				Program	n steps	9				
Operand	Туре		Applicable elements												Offset addressing
S1	BOOL		Х	Y	М	S	LM	SM			С	Т			
D	BOOL			Y	М	S	LM				С	Т			
S2	INT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	1 D	SD	С	т	V	Z	$\checkmark$
S3	INT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	1 D	SD	С	Т	V	Z	

#### **Operand description**

S1: Source operand 1

D: destination operand

S2: Source operand 2

S3: Source operand 3

#### **Function description**

When the power flow is valid, **S2** elements starting with **D** will more leftward for **S3** units, and the **S3** elements at the leftmost side will be discarded. At the same time, the contents of **S3** elements starting with **S1** will be filled into the right end of the string.

#### Note

1. The elements with smaller SN are at the right, and the elements with larger SN are at the left.

## 2. **S2** ≥ 0.

3. **S3** ≥ 0.

#### Example



1. When M0 is ON, the contents of 10 elements starting with M10 will move leftward for 3 bits, and the leftmost elements M17  $\sim$  M19 will be discarded. At the same time, the contents of the 3 elements starting with X0 will be filled into the right end of the string.

2. Before the execution: X0 = 1, X1 = 0, X2 = 1, M10 = 0, M11 = 1, M12 = 1, M13 = 0, M14 = 0, M15 = 1, M16 = 0, M17 = 0, M18 = 0, M19 = 1.

3. After the execution: the contents of X0 ~ X2 remain unchanged, M10 = 1, M11 = 0, M12 = 1, M13 = 0, M14 = 1, M15 = 1, M16 = 0, M17 = 0, M18 = 1, M19 = 0.

## 6.8 External Equipment Instruction

681	FROM: Read Word	Form	Snecial	Module	Buffer	Register	Instruction
0.0.1	T INDIVI. INEAU WUTU	I UIII	opeciai	Module	Duilei	ILEGISIEI	manuchom

LAD:								4	Applicab	le to	IVC	2			
1-11							3	I	nfluence	ed flag b	it				
IL: FRO	VI (S1	) (S2)	(D)	(S3)				1	Program	steps	9				
Operand	Туре		Applicable elements									Offset addressing			
S1	INT	Constant													
S2	INT	Constant													
D	INT								D				V		$\checkmark$
S3	INT	Constant													

## **Operand description**

**S1**: SN of the special module to be read, or the target module.

Range: 0 ~ 7. If the target module does not exist, the system will report target module address invalid.

**S2**: The starting address in the BFM of the target module.

Range: 0 ~ 32767. If the BFM address is invalid, the system will report "BFM unit of accessed special module exceeds range".

**D**: The D element where the data read from the target module will be stored.

**S3**: The number of consecutive buffer registers (single word) to be read.

Range: 1 ~ 32767. If the target register does not exist, the system will report "BFM unit of accessed special module exceeds range".

#### **Function description**

Read consecutively **S3** registers, starting with **S2** register, in the BFM of the target module (SN: **S1**) and put them into the **S3** word elements starting with **D**.

#### Note

The execution time of the FROM instruction is relatively long, and closely related to **S3**.

## Example

MO				997			LD	M0	
	FROM	0	3	D100	2	]	FRO	OM 0 3 D1	00 2

When M0 is ON, read consecutively 2 registers, starting with register 3, in the BFM of the target module number 0, and put them into the word elements D100 and D101.

6.8.2	DFROM: Read Double	Word Form	Special Mod	dule Buffer Register	Instruction

LAD:								Applicab	e to	IVC	2		
$\vdash$	6	-[ DFROM	(S1)	(S2)	(D)	(\$3)	]	Influence	d flag bi	t			
IL: DFRO	OM (S	61) (S2)	(D)	(S3)				Program	n steps	10			
Operand	Туре					Applic	able	elements					Offset addressing
S1	INT	Constant											
S2	INT	Constant											
D	DINT							D				V	$\checkmark$
S3	INT	Constant											

## **Operand description**

**S1**: SN of the special module to be read, or the target module.

Range: 0 ~ 7. If the target module does not exist, the system will report target module address invalid.

**S2**: The starting address in the BFM of the target module.

Range: 0 ~ 32767. If the BFM address is invalid, the system will report "BFM unit of accessed special module exceeds range".

**D**: The D element where the data read from the target module will be stored.

**S3**: The number of consecutive buffer registers (double word) to be read. Range:  $1 \sim 32767$ . If the target register does not exist, the system will report

"BFM unit of accessed special module exceeds range"

#### **Function description**

Read consecutively **S3** registers, starting with **S2** register, in the BFM of the target module (SN: **S1**) and put them into the **S3** double-word elements starting with **D**.

#### Note

The execution time of the DFROM instruction is relatively long, and closely related to **S3**.

#### Example

MO			16580857		LD M0	
DFROM	0	3	D200	1	[]] DFROM 0 3 D200	1

When M0 is ON, read 1 double word from register 3, in the BFM of the target module number 0, and put it into the double word element (D200, D201).

	ŀ	-[то	[ ТО (81) (82) (83) (84) ]							ole to ed flag b	IV it	/C2			
IL: TO	(S1)	(S2)	(S3)	(S4)					Program	steps	9				
Operand	Туре		Applicable elements a										Offset addressing		
S1	INT	Constant													
S2	INT	Constant													
S3	INT								D				V		$\checkmark$
S4	INT	Constant													

## 6.8.3 TO: Write Word To Special Module Buffer Register Instruction

## **Operand description**

**S1**: The SN of the special module to be written, or the target module.

Range: 0 ~ 7. If the target module does not exist, the system will report "Using FROM/TO instruciton to access module not existing".

**S2**: The starting register address in the BFM of the target module.

Range: 0 ~ 32767. If the BFM address is invalid, the system will report "BFM unit of accessed special module exceeds range".

**S3**: The data to be written into the target module.

**S4**: The number of consecutive buffer registers (single word) to be written.

Range: 1 ~ 32767. If the target register does not exist, the system will report "BFM unit of accessed special module exceeds range".

#### **Function description**

1. Write data from consecutive **S4** registers starting with **S3** to the consecutive **S4** buffer registers starting with **S2** in the BFM of the target module (SN: **S1**).

2. If **S3** is a constant, write it consecutively into the **S4** word elements starting with **S2** in the BFM of special module **S1**.

#### Note

The execution time of the TO instruction is relatively long, and closely related to  ${\it S4}$ .

## Example

SMO						_	LD	S	M0		
[	TO	0	8	1000	2	]	то	0	8	1000	2

When PLC runs, write 1000 respectively to buffer registers 8 and 9 in the BFM of target module number 0.

6.8.4	DTO: Write Double	Word To Special Mod	ule Buffer Register Instruction
			· · · · · · · · · · · · · · · · · · ·

LAD:								Applicat	le to	IN	/C2			
			(\$1)	(\$2)	(S3)	(\$4)	]	Influence	ed flag bi	t				
IL: DTO	(S1)	(S2)	(S3)	(S4)				Program	steps	10				
Operand	Туре		Applicable elements											
S1	INT	Constant												
S2	INT	Constant												
S3	DINT							D				V		$\checkmark$
S4	INT	Constant												

## **Operand description**

**S1**: The SN of the special module to be written, or the target module. Range: 0 ~ 7. If the target module does not exist, the system will report "Using

FROM/TO instruciton to access module not existing".

**S2**: The starting register address in the BFM of the target module.

Range: 0 ~ 32767. If the BFM address is invalid, the system will "BFM unit of accessed special module exceeds range". *S3*: The data to be written into the target module.

**S4**: The number of consecutive buffer registers (double word) to be written.

Range: 1 ~ 32767. If the target register does not exist, the system will report "BFM unit of accessed special module exceeds range".

#### **Function description**

1. Write data from consecutive **S4** registers starting with **S3** to the consecutive **S4** buffer registers starting with **S2** in the BFM of the target module (SN: **S1**).

2. If **S3** is a constant, write it consecutively into the **S4** double-word elements starting with **S2** in the BFM of special module **S1**.

#### Note

The execution time of the DTO instruction is relatively long, and closely related to **S4**.

#### Example

SMO						LD	SM	10		
	DTO	0	8	16711935	1	]DTO	0	8	16711935	1

When PLC runs, write a double word data 16711935 to buffer registers 8 and 9 (which forms a double-word element) in the BFM of target module number 0.

6.8.5 VRRD: Read Analog Potentiometer Value Instruction

LAD:	AD:								Applicat	ole to	IN	/C2	IVC1	
18/1	-1871							I	nfluence	ed flag k	oit			
IL: VRR	D (S)	) (D)					Program	n steps	5					
								hle elem	ents					Offset
operana	Type						rippilou							addressing
S	WORD	Constant												
D	WORD								D				V	$\checkmark$

#### **Operand description**

**S**: The specified potentiometer SN. Range: 0 ~ 255. If **S** is set outside this range, the system will report operand error.

**D**: The element where the read analog potentiometer value will be stored. Range: 0 ~ 255.

#### **Function description**

Read the value of the specified analog potentiometer and store it into the specified element.

## Example



When M0 is ON, read the value of analog potentiometer 0 and put the reading into D10.

## 6.8.6 REFF: Set Input Filtering Constant Instruction

LAD:	AD:										Applicable to IVC2 IVC1				
<u>z</u> <del>fr</del> - (	€ (b) [ B]f= (b) [ B									Influenced flag bit					
IL: REFI	L: REFF (S)									Program steps 3					
Operand Type Applicable															Offset addressing
S	WORD	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	D	SD	С	Т	V	Z	

## **Operand description**

S: Input filtering constant

IVC2

Range: 0 ~ 64ms. Any setting bigger than 64 will be regarded as 64.

IVC1

Range: 0, 8, 16, 32, 64. Any setting between any two values will be regarded as the smaller value. For example, a setting between 8 and 16 will be regarded as 8. Any setting bigger than 64 will be regarded as 64.

#### **Function description**

Set the input filtering constant of X0 ~ X17.

#### Note

The input filtering constant is valid only for non-high-speed input points.

## Example



When X10 is ON, set the input filtering constant to 30ms.

## 6.8.7 REF: Instant Refresh I/O Instruction

LAD:		101 - <del>1</del>	<u>م</u>	e sa	87/-			/	Applical	ole to	IN bit	VC2 IV	'C1	
	- (7)	(0)		-										
IL: REF	(D)	(S)							rogram	i steps	5			
Operand	Typo					^	nnlicah		onte					Offset
Operanu	Type					-	vppiicau		ients					addressing
D	BOOL		Х	Y										
S	INT	Constant												

## **Operand description**

*D*: the starting X or Y element to be refreshed. The specified starting element address should always be a multiple of 8 (in octal system). For example, X0, X10, X20... or Y0, Y10, Y20....

**S**: the number of inputs and outputs to be refreshed. It should always be a multiple of 8, for example, 8, 16, ..., 256, and so on.

#### **Function description**

Generally, the PLC will not refresh its inputs or outputs before the user program ends. However, if you want to refresh the inputs or outputs when the user program is still running, you can use this instruction.

#### Note

Generally, the REF instruction is used to refresh I/O immediately between the FOR-NEXT instruction and the CJ instruction.

You can also use the REF instruction to obtain the latest input and output the operation result without delay during the execution of the interrupts with I/Os. To refresh a relay output, you need to consider the response time.

#### Example

MO	PFF	OFF	0	-	LD	M0	
	KEF	10	0	-	REF	Y0	8

When M0 is ON, the stats at Y0  $\sim$  Y7 will be output immediately regardless of the scan cycle.

## 6.8.8 EROMWR: EEPROM Write Instruction

LAD:									Applicat	ole to	IVC	2 IV	C1		
94 I-	-faithea	on Thier	7/10		Influenc	ed flag k	oit								
IL: ERO	MWR	(S1) (S	52)						Program	steps	6				
Operand	Туре						Applica	ıble ele	ments						Offset addressing
S1	WORD								D						
S2	INT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	D	SD	С	Т	V	Ζ	$\checkmark$

## **Operand description**

*S1*: starting address of the elements to be stored. Range: D6000 ~ D6999

**S2**: number of the elements to be stored. **S2**<16 **S1** + **S2** < D7000

## **Function description**

1. Partial PLC data are battery backed. However, during the calculation, you can save the intermediate data into EEPROM with the EROMWR instruction.

2. This instruction is executed upon the rising edge.

3. Two EROMWR instructions cannot be executed at the same time. When SM196, the EEPROM write OK flag, is ON, it indicates that EEPROM is okay for write operation. When SM196 is OFF, it indicates that an EROMWR instruction is being executed.

## Note

An EROMWR instruction will make the scan cycle 2  $\sim$  5ms longer. It is recommended to set the **S1** to 6000 plus an integer multiple of 16, like D6000, D6016 and D6032.

## Example



In the preceding example, two sets of D elements are stored in the EEPROM:

1. SM1 and M1 makes M1000 generate a rising edge during the second scan cycle and triggers the execution of the first EROMWR instruction.

2. M1001 and SM196 makes the second rising edge, triggering the execution of the second EROMWR instruction.

## 6.9 Real-Time Clock Instruction

## 6.9.1 TRD: Read Real-Time Clock Instruction

LAD:							Applicat	ole to	ľ	/C2	IVC1	
₩	<del>) (</del>	]) <mark>(</mark> 1)-	 _[ '	<u>l</u> i			Influenc	ed flag k	oit			
IL: TRD	(D)						Program	n steps	3			
Operand	Туре				Applical	ble elen	nents					Offset addressing
D	WORD						D				V	

## **Operand description**

**D**: the starting storage element for the system time, which occupies the 7 consecutive elements starting with **D** 

## **Function description**

Read the system time and store the value in the storage elements designated by D.

## Note

The TRD instruction will fail upon system clock setting error.

## Example

	MO		2005	,	LD	M0
ļ		IKD	DIO	1	TRD	D10

When M0 is ON, send the system time to the 7 elements starting with D10.

The execution result of the instruction is as follows:

	Element	Item	Clock data		Element	Item
	SD100	Year	2000 to 2099	$ \rightarrow$	D10	Year
	SD101	Month	1 to 12	$ \rightarrow$	D11	Month
Special data register	SD102	Day	1 to 31	$\rightarrow$	D12	Day
for real time clock	SD103	Hour	0 to 23	$\rightarrow$	D13	Hour
	SD104	Minute	0 to 59	$\rightarrow$	D14	Minute
	SD105	Second	0 to 59	$\rightarrow$	D15	Second
	SD106	Week	0 to 6	$ \rightarrow$	D16	Week

## 6.9.2 TWR: Write Real-Time Clock Instruction

LAD:								Applicat	ole to	IN	/C2	IVC1	
R d	<del>9</del> —[	] <mark> </mark> H	← (	\$ <del>)</del> —[	Ţ			nfluenc	ed flag l	bit			
IL: TWR	(S)							Program	n steps	3			
Operand	Туре					Applica	able eler	nents					Offset addressing
S	WORD							D				V	

## **Operand description**

 $\boldsymbol{S}$ : the element where the system time is to be written

	Element	Item	Clock data		Element	Item
	D10	Year	2000 to 2099		SD100	Year
	D11	Month	1 to 12		SD101	Month
Data for clock setting	D12	Day	1 to 31	→	SD102	Day
Data for clock setting	D13	Hour	0 to 23	→	SD103	Hour
	D14	Minute	0 to 59	→	SD104	Minute
-	D15	Second	0 to 59	→	SD105	Second
	D16	Week	0 to 6	→	SD106	Week

## **Function description**

When the system time is different from the real time, you can use the TWR instruction to correct the system time.

## Note

1. The time must use the solar calendar, or the instruction will not be executed.

2. It is recommended to use the edge to trigger the execution of the instruction.

## Example

Changing the system time with the TWR instruction is shown in the following figure:

┝	X10 ──		[	MOV	2004	2004 D10	]	LD	X10	
			Æ	MOV	12	12 D11	]	EU	0004	D40
			Æ	MOV	7	7 D12	]	MOV	2004 12	D10 D11
			Æ	MOV	9	9 D13	]	MOV MOV	7 9	D12 D13
			Æ	MOV	53	53 D14	]	MOV	53	D14
			Æ	MOV	30	<mark>30</mark> D15	]	MOV	30 2	D15 D16
			ł	MOV	2	2 D16	]	LD EU	X11	
	X11	<b> </b> ↑	[	TWR	2004 D10	]		TWR	D10	
	MO 	TRD	<mark>200</mark> D20	)4 )	]			TRD	D20	

1. Upon the rising edge of X10, write the time setting into the 7 consecutive units starting with D10 (D10  $\sim$  D16).

2. Upon the rising edge of X11, write the values of elements D10  $\sim$  D16 into the system time.

3. When M0 is On, read the system time and save it into D20 ~ D26.

## 6.9.3 TADD: Add Clock Instruction

LAD:								Applicat	ole to	IN	/C2 IV	C1	
11000	- 7,00	2 1	a f	-100	194 - 2. 194 - 2.	ES-		Influenc	ed flag k	oit Z	ero, car	ry	
IL: TADI	D (S1)	(	S2)	( <i>D</i> )				Program	steps	7			
Operand	Typo					Appli	abla al	omonte					Offset
Operanu	туре					Арріі		ements					addressing
S1	WORD							D	SD			V	
S2	WORD							D	SD			V	$\checkmark$
D	WORD							D				V	

## **Operand description**

**S1**: clock data1. The 3 storage elements designated by **S1** are used to store the time data. If the data is not compliant with the time format, the system will report "Illegal instruction operand value".

**S2**: clock data2. The 3 storage elements designated by **S2** are used to store another time data. If the data is not compliant with the time format, the system will report "Illegal instruction operand value".

*D*: time result storage unit. The result of the time adding operation is stored in the 3 storage elements designated by *D*. The result will affect the carry flag SM181 and the zero flag SM180.

## **Function description**

Add two time-format data. The operation rules follow the time format.

## Note

The time data for the operation must meet the time setting range requirements.

- Hour: 0 ~ 23
- Minute: 0 ~ 59
- Second: 0 ~ 59

## Example

-								
	S1				S2		D	
D10	23	(hour)	+	D20	23 (hour)	=	D30	23 (hour)
D11	59 (I	minute)		D21	58 (minute)		D31	58 (minute)
D12	59 (s	second)		D22	58 (second)		D32	57 (second)
	[	MOV	23	23 D10	]	1	D X10	
	£	MOV	59	59 D11	]	N	10V 23 D10	1
	£	MOV	59	<mark>59</mark> D12	]	N N	10V 59 D11 10V 59 D12	
	£	MOV	23	<mark>23</mark> D20	]	N	10V 23 D20	)
	£	MOV	58	<mark>58</mark> D21	]	N	10V 58 D21 10V 58 D22	
	ł	MOV	58	<mark>58</mark> D22	]	L	.D M0 TADD D0 D2	20 D30
MO	—[	TADD	<mark>23</mark> D10	<mark>23</mark> D20	23 D30 ]	L	D SM181	
SM181		Y10				L	DUI Y10 D SM180	
SM180 ——⊣ ⊢	)	×111 >				C	OUT Y11	

When X10 is ON, send the time data to the 3 storage elements starting with D10 (D10 ~ D12) and the 3 storage elements starting with D20 (D20 ~ D22).
 When M0 is ON, add the data in D10 ~ D12 and the data in D20 ~ D22, and store the result in the 3 storage elements starting with D30.

3. The carry flag (SM181) will be set to ON, and the zero flag (SM180) will be set to OFF.

## 6.9.4 TSUB: Subtract Clock Instruction

LAD:	<del>7 (8</del>	75 <b>(B</b>	) (SI	). <b>]</b>	( <del>(82) - (</del>	tuer z	a) (si	07	Applicat	ole to ed flag t	oit	IVC2 IV Zero, bor	C1 row	
IL: TSU	JB (S	51)	(S2)	(D)				1	Program	n steps		7		
Operand	Typo						Applic	abla ala	monte					Offset
Operatio	туре						Applic		ments					addressing
S1	WORD								D	SD			V	$\checkmark$
S2	WORD								D	SD			V	V
D	WORD								D				V	$\checkmark$

## **Operand description**

S1: clock data1. The 3
storage elements designated
by S1 are used to store the
time data. If the data is not
compliant with the time format,
the system will report "Illegal
instruction operand value".

**S2**: clock data2. The 3 storage elements designated by **S2** are used to store another time data. If the data is not compliant with the time format, the system will report "Illegal instruction operand value".

*D*: time result storage unit. The result of the time subtracting operation is stored in the 3 storage elements designated by *D*. The result will affect the carry flag SM181 and the zero flag SM180.

## **Function description**

Conduct subtract operation on the time format data, with the operation rules following the time format.

## Note

The time data for the operation must meet the time setting range requirements.

- Hour: 0 ~ 23
- Minute: 0 ~ 59
- Second: 0 ~ 59

## Example

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		S1			S2		D	)
D11         59 (minute)         D21         59 (minute)         D31         59 (minute)           D12         58 (second)         D22         59 (second)         D32         59 (second)           X10         [         MOV         23         D10         ]         LD X10           [         MOV         59         D11         ]         MOV 23         D10           [         MOV         59         D11         ]         MOV 23         D10           [         MOV         58         D12         ]         MOV 59         D11           [         MOV         58         D12         ]         MOV 59         D11           [         MOV         58         D12         ]         MOV 59         D21           [         MOV         59         D21         ]         MOV 59         D21           [         MOV         59         D22         ]         LD         M0           [         MOV         59         D22         ]         TSUB         D10         D20         D3           [         MOV         59         D22         ]         TSUB         D10         D20         D3	D10	23 (hour)		D20	23 (hour)	_	D30	23 (hour)
D12         58 (second)         D22         59 (second)         D32         59 (second)           X10         Mov         23         D10         ]         LD         X10           {         Mov         59         D11         ]         MOV         23         D10           {         Mov         59         D11         ]         MOV         23         D10           {         Mov         59         D11         ]         MOV         23         D10           {         Mov         58         D12         ]         MOV         59         D11           {         Mov         58         D12         ]         MOV 59         D11           {         Mov         59         D20         ]         MOV 59         D21           {         Mov         59         D21         ]         MOV 59         D22           {         Mov         59         D22         ]         TSUB         D10         D20         D30           Mo         59         D20         D30         ]         LD         SM182           MO         59         D20         D30         ]         LDS	D11	59 (minute)		D21	59 (minute)	_	D31	59 (minute)
X10 ( MOV 23 D10 ] ( MOV 59 D11 ] ( MOV 59 D11 ] ( MOV 58 D12 ] ( MOV 58 D12 ] ( MOV 58 D12 ] ( MOV 58 D12 ] ( MOV 59 D21 ] ( MOV 59 D22 ] ( MOV 59 D21 ] ( MOV 59	D12	58 (second)	)	D22	59 (second)		D32	59 (second)
SM102         110           SM180         Y11           Image: SM180         Y11	M0 SM182 SM180	[ MOV [ MOV [ MOV [ MOV [ MOV [ MOV [ MOV [ TSUB [ TSUB [ TSUB [ TSUB [ ] ] ]	23 59 58 23 59 59 23 D10	23 D10 59 D11 58 D12 23 D20 59 D21 59 D22 23 D20	] ] ] ] ] 23 	]	LD X10 MOV 23 [ MOV 59 [ MOV 58 [ MOV 23 [ MOV 59 [ LD M0 TSUB D10 LD SM182 OUT Y10 LD SM180 OUT Y11	D10 D11 D12 D20 D21 D22 D20 D30

 When X10 is ON, send the time data to the 3 storage elements starting with D10 (D10 ~ D12) and the 3 storage elements starting with D20 (D20 ~ D22).
 When M0 is ON, subtract the data in (D20 ~ D22) from the data in (D10 ~ D12), and store the result in the 3 storage elements starting with D30.
 The carry flag (SM182) will be set to ON, and the zero flag (SM180) will be set to OFF.

## 6.9.5 HOUR: Timing List Instruction

LAD:										Applicable to		/C2 IV	C1		
<i>If → (</i> <del>61) /</del> <i>Had</i> <b>a</b> s) (S) <i>If → (</i> <del>61) /</del> <i>Had</i> <b>a</b> s) (S) _									nfluenc	ed flag l	bit				
IL: HOU	R (S)	(D1)	(D2)					F	Program	ı steps	8	3			
Operand											Offset				
Орегани	Applicable Applicable							nents						addressing	
S	INT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSⅣ	I D	SD	С	Т	V	Ζ	$\checkmark$
D1	INT								D				V		$\checkmark$
D2	BOOL			Y	М	S	LM								

## **Operand description**

*S*: the hour comparison data. Range: 0 ~ 32767.

*D1*: time storage starting element. *D1*: hour. *D1*+1: second.

**D2**: alarm output address. When  $D1 \ge S$ , the alarm point changes to ON, and generates output.

## Function description

Make judgment on the time when the input contact is ON (unit: hour).

## Note

1. To sustain the current data after power off, set **D1** within the element Saving Range (see 2.2.1 System Block). Otherwise, the current data will be cleared upon PLC power off or when PLC changes from RUN to STOP.

2. The timing still continues even when the alarm output **D2** is ON.

3. The hour data in this instruction is a 16-bit integer. It will restart from 0 after 32767.

## Example

┝	MO MOV	1000	1000 D100	]		LD MOV	M0 1000 I	D100	
-	М1 Нолк М10 Ц — Ч10 Х10 Х10 Х10 Х10 Х10 Х10 Х10 Х10 Х10 Х	1000 D100	0 D200	OFF M10	]	LD M HOUR LD OUT	1 D100 M10 Y10	D200	M10

1. When M0 is ON, set the comparison data of HOUR instruction.

2. When M1 is ON, accumulate the time for the input contact.

3. M10 will be ON when the accumulated time  $\geq$  1000.

## 6.9.6 DCMP: Compare Date (=, <, >, <>, >=, <=) Instruction

LAD:			and all		-		10-121	Applicat	ole to	ľ	VC2	IVC1	
- 1450	44	CMD)	[52]]-	-1 1124	- 1038	4 6	37.11-	11.					
-1 143	41	CME C	(52)]-	-1 1122/	D.M.	12 6	37/1-						
1 12	41	CMED -	922 (37.)] <del></del>				SZ ]]-	Influenced flag bit					
	( <del>152)</del> [ T		MR(Q) (SI)] (\$2) [			(D)	<i>(SI)</i> ]						
(\$S	<del>?) (</del>	DCML(D)	CML(D) (SI)] (S2) [ DCMR(D)				<i>(SI)</i> ]	-					
	<del>?) (</del>	DCMR/204	(SD)		— ром	(D)	(SI)]						
IL:	-				-		_						
DCMF	<b>&gt;</b> =	(S1)	(S2)	(D)									
DCMF	DCMP<		(S2)	(D)									
DCMF	DCMP>		(S2)	( <i>D</i> )				Program steps		-	,		
DCMF	<b>&gt;</b>	(S1)	(S2)	( <i>D</i> )				Frogram steps					
DCMF	<b>&gt;</b> =	(S1)	(S2)	( <i>D</i> )									
DCMF	<b>&gt;</b> <=	(S1)	(S2)	( <i>D</i> )									
Onerend	Turne					المما	iaahla al	omonto					Offset
Operand	туре					Арріі	icable el	ements					 addressing
S1	INT							D	SD			V	V
S2	INT							D	SD			V	V
D	BOOL			Y M	S	LM				С	Т		

#### **Operand description**

*S1*: starting word element for date comparison data 1, which occupies the 3 word elements following *S1*. The data must comply with the solar calendar format, or the system will report operand error.

**S2**: starting word element for date comparison data 2, which occupies the 3 word elements following **S2**. The data must comply with the solar calendar format, or the system will report operand error.

**D**: Comparison status output. When the data meet the comparison condition, **D** is set ON; otherwise, it is set OFF.

#### **Function description**

Conduct BIN comparison on the date data stored in the elements starting with *S1* and *S2*, and assign the comparison result to *D*.

## Note

The date data stored in the elements starting with *S1* and *S2* must comply with the solar calendar format, or the system will report operand error. For example, "2004, 9, 31" and "2003, 2, 29" are both illegal.

#### Example

SMO		2004	2004 D0	1		
	{ MOV	10	10 D1	]		LD SM0
	{ MOV	25	25 D2	1		MOV 2004 D0
	{ MOV	2004	2004 D10	1		MOV 10 D1 MOV 25 D2
	{ MOV	10	10 D11	1		MOV 2004 D10
	4 MOV	24	24 D12	1		MOV 10 D11 MOV 24 D12
XO	[ DCMP=	2004 D0	2004 D10	OFF MO	Ĵ	LD X0
	{ DCMP<	2004 D0	2004 D10	OFF M1	1	DCMP= D0 D10 M0 DCMP< D0 D10 M1
	{ DCMP>	2004 D0	2004 D10	ON M2	1	DCMP> D0 D10 M2
	{ DCMP⇔	2004 D0	2004 D10	ON M3	1	DCMP<> D0 D10 M3
	{ DCMP>=	2004 D0	2004 D10	ON M4	]	DCMP<= D0 D10 M5
	{ DCMP<=	2004 D0	2004 D10	OFF MS	1	

Conduct BIN comparison on the date data stored in the elements starting with D0 and D10, and assign the comparison result to M0.
LAD:	o) ( (	Distancia (	(01)1	L Acre	) E ava	uíra)	(0)7	Applicat	ole to	r	VC2	IVC1	
(p)	<del>27 -</del> L	LCWH74	(51)	( <del>)</del>	<u>-</u> [ 10	iμ <i>77</i>	(51)]						
(\$ <del>\$</del>	<del>?) [</del> ]	ICM(D)	<i>(SI)</i> ]		<del>) —</del> [ та	NDQ	<i>(SI)</i> ]						
1 10	<del>82) {</del>	(( <b>H</b> 1077	(\$1)	1 06	11° <del>7 (6</del>	(ANC)	(SI)						
-1 42	-[ 16	4280	BUT	1 112		21 10	<u>\$2/]</u> [-	Influenc	ed flag l	bit			
140	<u>–</u> n	UD -	1527-	1 142	7.316	94 6	81)][-						
-142	-[ 76	UD P	[3]]]-	-1 1482		64 6	871]]-						 
IL:													
TCMF	<b>&gt;</b> =	(S1)	(S2)	( <i>D</i> )									
TCMF	<b>&gt;</b> <	(S1)	(S2)	(D)									
TCMF	<b>&gt;</b>	(S1)	(S2)	(D)				Drogram	etone	7	,		
ТСМЕ	<b>&gt;</b>	(S1)	(S2)	(D)				Filografi	i steps	'			
TCMF	<b>&gt;</b> =	(S1)	(S2)	(D)									
TCMF	<b>&gt;</b> <=	(S1)	(S2)	(D)									
Onenand						ا م م	liaahla a	le mente					Offset
Operand	туре					Аррі	licable e	ernents					addressing
S1	INT							D	SD			V	V
S2	INT							D	SD			V	$\checkmark$
D	BOOL			Y M	S	LM				С	Т		

## 6.9.7 TCMP: Compare Time (=, <, >, <>, >=, <=) Instruction

## **Operand description**

**S1**: starting word element for date comparison data 1, which occupies the 3 word elements following **S1**. The data must comply with the 24-hour time format, or the system will report operand error.

**S2**: starting word element for date comparison data 2, which occupies the 3 word elements following **S2**. The data must comply with the 24-hour time format, or the system will report operand error.

**D**: comparison status output. When the data meet the comparison condition, **D** is set ON; otherwise, it is set OFF.

### **Function description**

Conduct BIN comparison on the time data stored in the elements starting with *S1* and *S2*, and assign the comparison result to *D*.

### Note

The time data stored in the elements starting with *S1* and *S2* must comply with the 24-hour system, or the system will report operand error. For example, "24, 10, 31" and "13, 59, 60" are both illegal.

### Example

SMO		20	20 D0	]		
	{ MOV	31	31 D1	1		
	{ MOV	1	1 D2	1		MOV 20 D0
	{ MOV	20	20 D10	1		MOV 31 D1
	{ MOV	30	30 D11	3		MOV 1 D2 MOV 20 D10
	{ MOV	59	59 D12	Ĩ		MOV 30 D11 MOV 59 D12
XO		20 D0	20 D10	OFF MO	]	LD X0
	{ TCMP<	20 D0	20 D10	OFF M1	]	TCMP= D0 D10 M0 TCMP< D0 D10 M1
	{ TCMP>	20 D0	20 D10	ON M2	1	TCMP> D0 D10 M2
	{ TCMP<>	20 D0	20 D10	ON M3	]	TCMP>= D0 D10 M4
	{ TCMP≻=	20 D0	20 D10	ON M4	]	TCMP<= D0 D10 M5
	{ TCMP<=	20 D0	20 D10	OFF M5	1	

Conduct BIN comparison on the time data stored in the elements starting with D0 and D10, and assign the comparison result to M0.

# 6.10 High-speed I/O Instruction

## 6.10.1 HCNT: High-speed Counter Drive Instruction

LAD:									Applica	ble to	IN	/C2  \	/C1	
	E MAN	r fint	/	<u>1</u> 0%	ET - J				Influenc	ed flag l	bit			
IL: HCN	г ( <i>D</i> )	(S)							Progran	n steps	7			
Operand	Type			cable el	omonte					Offset				
Operand	туре						Аррік		ementa					addressing
D	DINT							С						
S	DINT	KnS	KnSM	D	SD	С		V	V					

### **Operand description**

**D**: Counter SN. Range: C236 ~ C255.

**S**: Comparison constant, a signed 32-bit data. Range: -2147483648 ~ 2147483647.

### **Function description**

Drive the specified hardware high speed counter. All high speed counter must be driven to perform high speed counting. Meanwhile, the NO contact action of the counter will be judged based on the **S** value.

### Note

The HCNT instruction, SPD instruction, external input interrupt and pulse capture may have contradictory hardware demands. Pay attention to the preconditions of all system high speed I/Os, and refer to the instruction description in actual practice.

### Example



1. When X12 changes from OFF to ON, the hardware counter C236 will be initialized. X0 is the pulse input point for C236, which counts the pulse input through X0. When X12 is OFF, X0 is a common input point, and C236 cannot count the external pulse of X0.

2. Contact actions: when the current value of the counter C236 increases from -6 to -5, the contact of C236 will be set. When the counter C236 decreases from -5 to -6, the contact of C236 will be reset.

3. When X11 is ON, the RST instruction will be executed, C236 will be cleared, and the C236 contact will be disconnected.

4. When PLC is powered off, the data of the high-speed counter and the contact status is set by the user in the system block through the AutoStation software.

6.10.2	DHSCS: High-speed	<b>Counting Compare</b>	Set Instruction
--------	-------------------	-------------------------	-----------------

LAD:	- 18	or si		-/ 180	e de	88 <b>9</b> -	an	2	Applicat	ole to		IVC2	IVC1		
IL: DHS	CS (S		Influenc Program	ed flag I steps	oit 1	0									
Operand	Туре		Applicable elements												Offset addressing
S1	DINT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	D	SD	С		V		
S2	DINT										С				
D	BOOL		Y M S												

### **Operand description**

**S1**: a 32-bit DINT data, the one with which the high speed counter will compare. Range: -2147483648 ~ 2147483647.

**S2**: high speed counter. Range: C236 ~ C255.

*D*: target bit element, including Y, M and *S* elements. They will be set or output immediately regardless of the scan cycle.

### Function description

1. A high-speed counter will count in the interrupt mode only when it is driven by the HCNT instruction and the counting input changes from OFF to ON. When high-speed counter counts to **S1** in the DHSCS instruction, the bit element **D** will be set immediately, or, in the case of a Y element, the Y element will output immediately.

2. This instruction can be used when you want to set (and output, for Y elements) a certain bit element by comparing the counter value with a preset value.

### Note

1. The DHSCS instruction must work together with the HCNT instruction, because DHSCS is only applicable to the high speed counters that is driven by HCNT.

2. The DHSCS instruction will be validated only by pulse input. You cannot validate the instruction by changing the counter value with instructions such as DMOV or MOV.

3. DHSCS (DHSCI, DHSCR, DHSZ, DHSP, DHST) can be used repeatedly. However, at most the first six such instructions can be driven at the same time.

4. The maximum frequency supported by the PLC high speed counters will be seriously affected by instructions like DHSCS, DHSCI, DHSCR, DHSZ, DHSP and DHST. For details, see *Chapter 8 Using High Speed I/O*.

### Example

K1SM236				LD M1 OUT SM236
М0 — ( нсит М2 — ( рнзсз — ( рнзсз — ( ) — ( )	0 C236 2000	1000 0 C236	] OFF Y10	LD M0 HCNT C236 1000 LD M2 DHSCS 2000 C236 Y10 LD C236 OUT Y11

1. When M1 is ON, C236 will count in the interrupt mode when X0 changes from OFF to ON (see *Chapter 8 Using High Speed I/O* for the description of the X0 input frequency). When C236 changes from 999 to 1000, the C236 contact will be set. When C236 changes from 1001 to 1000, the C236 contact will be reset. When the C236 contact drives Y11, the execution of Y11 is determined by the user program scan cycle.

2. When M2 is ON, and the DHSCS instruction meets the requirements stated in the preceding "Note", Y10 will output immediately if C236 reaches 2000, regardless of the the scan cycle.

3. When M0 is ON, SM236 is driven, and the C236 counter counts down. When M0 is OFF, SM236 is not driven, and the C236 counter counts up.

## 6.10.3 DHSCI: High-speed Counting Compare Interrupt Trigger Instruction

LAD:									Applicat	ole to	IN	/C2 IV	/C1			
-1 1/2	<u>–</u> m	8311 [3.	UJ-	-14	<del>64 -</del> 2	- 11490	27-	Influenc	ed flag l	oit						
IL: DHS	CI (S1	') (S2)	(S	3)				Program	n steps	10						
Operand	Туре		Applicable elements													
S1	DINT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	1 D	SD	С		V		$\checkmark$	
S2	DINT										С					
S3	WORD	Constant	onstant													

### **Operand description**

*S1*: a 32-bit DINT data, the one with which the high speed counter will compare. Range: -2147483648 ~ 2147483647.

**S2**: high speed counter. Range: C236 ~ C255.

**S3**: interrupt SN. Range: 20 ~ 25.

### **Function description**

A high-speed counter will count in the interrupt mode only when it is driven by the HCNT instruction and the counting input changes from OFF to ON. When the counter counts to **S1**, the **S3** interrupt will start. You can write the interrupt according to your actual needs.

### Note

1. The DHSCI instruction must work together with the HCNT instruction, because DHSCI is only applicable to the high speed counters that is driven by HCNT.

2. The DHSCI instruction will be validated only by pulse input. You cannot validate the instruction by changing the counter value with instructions such as DMOV or MOV. DHSCI (DHSCS, DHSCR, DHSZ, DHSP, DHST) can be used repeatedly.
 However, at most the first six such instructions can be driven at the same time.
 The maximum frequency supported by the PLC high speed counters will be seriously affected by instructions like DHSCS, DHSCI, DHSCR, DHSZ, DHSP and DHST. For details, see *Chapter 8 Using High Speed I/O*.

### Example

Main user program:

	₩1 ⊣		SM236					LD	M1		
L	MO	-(	HCNT	0 C236	1000	]		OUT LD	SM236 M0		
L	M2	-[	DHSCI	2000	0 C236	20	]	DHSCI LD	2000 C236	C236	20
⊢	C236 ┥		< ¥11 >					OUT	Y11		

Interrupt No.20:

	M10	¥2	:0 >				LD	M10
		0	-	¥12			OUT	Y20
ł	>=	DO	100	⊢<```>			LD>=	D0 100
					0		OUT	Y12
				ίς mov o	DO	]	MOV	0 D0

1. When M1 is ON, C236 will count in the interrupt mode when X0 changes from OFF to ON (see *Chapter 8 Using High Speed I/O* for the description of the X0 input frequency). When C236 changes from 999 to 1000, the C236 contact will be set. When C236 changes from 1001 to 1000, the C236 contact will be reset. When C236 contact drives Y11, the execution of Y11 will be determined by the user program scan cycle.

2. When M2 is ON, and the DHSCI instruction meets the requirements stated in the preceding "Note", interrupt No.20 will be executed immediately when C236 reaches 2000, regardless of the the scan cycle.

3. When M0 is ON, SM236 is driven, and the C236 counter counts down. When M0 is OFF, SM236 is not driven, and the C236 counter counts up.

4. With pulse input, interrupt No.20 will be executed when C236 reaches 2000, and Y20 will be driven when M10 is ON. But, the output of Y20 is related to the scan cycle. Meanwhile, Y12 will be driven and D0 will be cleared when D0 is detected to be larger than 100.

LAD:	a) E 1	a control		4501	C DIK	(01)]	Applicat	ole to	IN	/C2 IV	'C1			
(Þ.	<del>6/ </del> [ ]	HENRY (		1 1112	517]	Influence	ed flag l	oit						
IL: DHS	CR (S	1) (S2)	) (l	D)					Program	steps	10			
Operand	Typo						Appli	abla a	lomonte					Offset
Operanu	Type						Арріі		lements					addressing
S1	DINT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	1 D	SD	С		V	
S2	DINT										С			
D	BOOL			Y	М	S					С			

## 6.10.4 DHSCR: High-speed Counting Compare Reset Instruction

### **Operand description**

**S1**: a 32-bit DINT data, the one with which the high speed counter will compare. Range: -2147483648 ~ 2147483647.

**S2**: high speed counter. Range: C236 ~ C255.

*D*: target bit element. The action on Y, M, *S* or C will be valid immediately regardless of the scan cycle. If *D* is a C element, it must be *S2*.

### Function description

A high-speed counter will count in the interrupt mode only when it is driven by the HCNT instruction and the counting input changes from OFF to ON. When the counter counts to **S1**, the **D** element will be reset (and output, for Y elements) immediately. You can use this instruction when you want to reset (and output, for Y elements) a certain bit element by comparing the counter value with a preset value.

### Note

1. The DHSCR instruction must work together with the HCNT instruction, because DHSCR is only applicable to the high speed counters that is driven by HCNT.

2. The DHSCR instruction will be validated only by pulse input. You cannot validate the instruction by changing the counter value with instructions such as DMOV or MOV.

3. DHSCR (DHSCI, DHSCS, DHSZ, DHSP, DHST) can be used repeatedly. However, at most the first six such instructions can be driven at the same time.

4. The maximum frequency supported by the PLC high speed counters will be seriously affected by instructions like DHSCS, DHSCI, DHSCR, DHSZ, DHSP and DHST. For details, see *Chapter 8 Using High Speed I/O*.

### Example



1. When M1 and X7 are both ON, C255 counts the phase difference of X3 and X4 in the interrupt mode. When C255 changes from 999 to 1000, C255 contact will be set, and reset when C255 changes from 1001 to 1000. When C255 contact drives Y20, the execution of Y20 will be determined by the user program scan cycle.

2. When M2 is ON, and the DHSCR instruction meets the requirements stated in the preceding "Note", Y1 will be output immediately when C255 reaches 2000, regardless of the the scan cycle.

3. When the X3 pulse input is ahead of X4, SM255 is ON. When the X4 pulse input is ahead of X3, SM255 is OFF.

4. When X7, the startup signal of C255, is OFF, C255 will not count.

5. When M1 and X7 are all ON, if X5 is ON, C255 will be cleared, and C255 auxiliary contact will be reset.

LAD:	<u> </u>	Veer) (	51)(D) <b>\</b>	152	<u>, </u>	(TEBN)	(51)(	App	licable ienced	to flag bit	IVC	2 IV	/C1		
IL: DHS	Z (S1)	(S2)	(S3)	(D)				Prog	gram st	eps	13				
Operand	Туре		Applicable elements												
S1	DINT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	D	SD	С		V		$\checkmark$
S2	DINT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	D	SD	С		V		$\checkmark$
S3	DINT										С				
D	BOOL			Y	М	S									

### 6.10.5 DHSZ: High-speed Counting Zone Compare Instruction

### **Operand description**

*S1*: a 32-bit DINT data, one of the two numbers with which the high speed counter will compare. Range: -2147483648 ~ 2147483647.

**S2**: a 32-bit DINT data, one of the two numbers with which the high speed counter will compare. Range:

-2147483648 ~ 2147483647.

**S3**: high speed counter. Range: C236 ~ C255.

*D*: target bit element. The action on Y, M or *S* will be valid immediately regardless of the scan cycle.

### **Function description**

1. A high-speed counter will count in the interrupt mode only when it is driven by the HCNT instruction and the counting input changes from OFF to ON.

2. When the counter value is smaller than *S1*, the *D* element will be set. In addition, the *D*+1 and *D*+2 elements will be reset.

3. When the counter value is  $\geq$ S1 and  $\leq$ S2, the **D** and **D**+2 elements will be reset, while the **D**+1 element will be set.

4. When the counter value is bigger than *S2*, the *D* and *D*+1 elements will be reset, while *D*+2 element will be set.
5. If D is a Y element, it will be output immediately regardless of the scan cycle.

### Note

1. The DHSZ instruction must work together with the HCNT instruction, because DHSZ is only applicable to the high speed counters that is driven by HCNT.

2. The DHSZ instruction will be validated only by pulse input. You cannot validate the instruction by changing the counter value with instructions such as DMOV or MOV.

3. DHSZ (DHSCI, DHSCS, DHSCR, DHSP, DHST) can be used repeatedly. However, at most the first six such instructions can be driven at the same time.

4. The maximum frequency supported by the PLC high speed counters will be seriously affected by instructions like DHSCS, DHSCI, DHSCR, DHSZ, DHSP and DHST. For details, see *Chapter 8 Using High Speed I/O.* 

### Example



 When M0 and X6 are both ON, C249 will count up when X0 changes from OFF to ON, or count down when X1 changes from OFF to ON. When C249 changes from 999 to 1000, the C249 contact will be set; when C249 changes from 1001 to 1000, the C249 contact will be reset. When C249 contact drives Y6, the execution of Y6 will be determined by the user program scan cycle.
 When M1 is ON, the DHSZ instruction meets the requirements stated in the preceding "Note", the states of elements Y10 ~ Y12 are as follows:

- (1) C249 < 1000: Y10: ON. Y11 & Y12: OFF.
- (2) 1000 ≤ C249 ≤ 2000: Y10, Y12: OFF. Y11: ON.
- (3) C249 > 2000: Y10, Y11: OFF. Y12: ON.

The outputs of Y10, Y11 and Y12 are immediate, regardless of the scan cycle. 3. When M0 and X6 are ON at the same time, SM249 will be reset if X0 changes from OFF to ON and the counter counts up, and SM249 will be set if X1 changes from OFF to ON and the counter counts down.

4. When X6 is OFF, C249 stops counting.

5. When M0 and X6 are both ON, if X2 is ON, C249 will be cleared, and C249 auxiliary contact will be reset.

LAD:						Арр	licable	to	IVC	2 IVC1				
-/ 145										flag bit				
IL: DHST ( <i>S1</i> ) ( <i>S2</i> ) ( <i>S3</i> )									gram ste	eps	10			
Operand	Typo					nlicable (	lomont						Offset	
Operanu	Type					Λþ		lemen	13					addressing
S1	DINT								D					
S2	INT	Constant												
S3	DINT										С			

## 6.10.6 DHST: High-speed Counting Table Compare Instruction

## **Operand description**

**S1**: the starting D element for table comparison. The following three D elements are the comparison data, SN of Y element and the output state. These four D elements form a record.

**S2**: the number of records for comparison. Range: 1 ~ 128.

S3: high speed counter. Range: C236 ~ C255.

## **Function description**

1. A high-speed counter will count in the interrupt mode only when it is driven by the HCNT instruction and the counting input changes from OFF to ON.

2. When the counter value equates the comparison data of the present record, the corresponding Y element will be output.

3. The Y element specified in the present record will be output immediately, regardless of the scan cycle.

4. You can use the DHST instruction when you want to immediately output, according to certain comparison data, the Y elements specified in a certain table.

## Note

1. The DHST instruction must work together with the HCNT instruction, because DHST is only applicable to the high speed counters that is driven by HCNT.

2. The DHST instruction will be validated only by pulse input. You cannot validate the instruction by changing the counter value with instructions such as DMOV or MOV.

3. DHST (DHSCI, DHSCS, DHSCR, DHSP, DHSZ) can be used repeatedly. However, at most six such instructions can be driven at the same time.

4. In a user program, the DHSP and DHST instructions cannot be valid at the same time. That means a valid DHST (or DHSP) instruction will make the following DHSP (or DHST) instructions invalid.

5. The maximum frequency supported by the PLC high speed counters will be seriously affected by instructions like DHSCS, DHSCI, DHSCR, DHSZ, DHSP and DHST. For details, see *Chapter 8 Using High Speed I/O*.

### Example

The table for comparison is shown below:

Comparis	on data	Y element	Set/Reset	Operation flow
Most significant bit	Least significant bit			
D100=0	D101=100	D102=0	D103=1	1↓
D104=0	D105=200	D106=1	D107=0	2↓
D108=0	D109=300	D110=2	D111=1	3↓
D112-0	D113-300	D114-3	D115-1	4 ↓
D112=0	D113-300	D114-3	0113-1	Return to 1

The following is the user program:

10.291			100501			
1001	0007	000		- nerv	100	LD SM1
1102	4 ATV	0	1002	1 80	u i	DMOV 100 D100
1			1			MOV 0 D102
2003			200	· · · ·		MOV 1 D103
1104	4 DBOV	200	3104	1 000V	200	DMOV 200 D104
1	1.00		100	4. 818		MOV 1 D106
0			0	Ĩ		MOV 0 D107
1007	1 80	u –	11/17	4 ATE	0	DMOV 300 D108
1100	4 DWW	.000	1008	1 000V	300	MOV 2 D110
2			2			MOV 1 D111
1110	1.00	2		1		DMOV 100 D112
im	4 ATV		im	1.80	1	MOV 3 D114
100	1 000		101	4 1907	100	MOV 1 D115
1			1			LD M0
104	4 ATV	л	3114	1 80	а	HCNT C244 1000
11115	1 8.8	1	10.5	a ann		LD M1
	-	0	an i		a	DHST D100 4 C244
1000	HCHT	C244	-100	-1 1000	0244	LD M2
	COMIST	100	- E	C2005T	â.u	OUT SM244
, Mar	37244		100 E	38244		LD C244
			1744			OUT Y10
L.	( ¹¹¹ )		1 T	<ul> <li>C 111 D</li> </ul>		

1. In the first user-program scan cycle, assign elements D100 ~ D115 with values to generate the table for comparison. 2. When M0 and X6 are both ON, the C244 will count when X0 changes from OFF to ON (for the input frequency, see *Chapter 8 Using High Speed I/O*). When C244 changes from 999 to 1000, the C244 contact will be set; when C244 changes from 1001 to 1000, the C244 contact will be reset. When the C244 contact drives Y10, the execution of Y10 will be determined by the user program scan cycle.

3. When M1 is ON, and the DHST instruction meets the requirements in the preceding "Note", the compare will start with the first record. The compare with the second record will not start until the first compare is over and the corresponding Y element has been output. After the compare with the last record is over, the compare with the first record will start again, and SM185 will be set. SD184 is the SN of the present record, and SD182 & SD183 are the present data for comparison. The corresponding output will be immediate, regardless of the scan cycle.

4. When M2 is ON, SM244 is ON, and C244 will count down. If M2 is OFF, SM244 is OFF, and C244 will count up. 5. When X6 is OFF, C244 is invalid.

6. When M0 and X6 are both ON, if X2 is ON, C244 will be cleared, and C244 auxiliary contact will be reset.

LAD:								Applicat	ole to	IV	C2  \	/C1	
	<del>?) [</del>	DHSB3)	(SD]		-[ IJ	)H\$\$3) (	(SI)]	Influence	ed flag bit				
IL: DHSI	P (S1)	(S2)	(S3)					Program	steps	10			
Operand	Typo								Offset				
Operand	туре					Аррік		siementa					addressing
S1	DINT							D					
S2	INT	Constant											
S3	DINT									С			

## 6.10.7 DHSP: High-speed Counting Table Compare Pulse Output Instruction

### **Operand description**

**S1**: the starting D element for table comparison. The following three D elements are the comparison data, and the data to output to SD180 & SD181. These four D elements form a record.

**S2**: the number of records to be compared. Range: 1 ~ 128.

S3: high speed counter. Range: C236 ~ C255.

### **Function description**

1. A high-speed counter will count in the interrupt mode only when it is driven by the HCNT instruction and the counting input changes from OFF to ON.

2. When the counter value equates the comparison data of the present record, the output data of the present record will become the values of SD180 & SD181.

3. You can use the DHSP instruction when you want to control the high speed output or assign values to certain parameters according to a table. For example, you can set the SD180 & SD181 (double word) as the output frequency of the PLSY instruction, and the PLSY output frequency will be adjusted by the table compare result.

### Note

1. The DHSP instruction must be used together with the HCNT instruction, because the DHST instruction cannot be executed unless the related high speed counter is driven by the HCNT instruction.

2. When the DHSP instruction is used together with the PLSY instruction, the values assigned to SD180

and SD181 must meet the frequency output requirement of the PLSY instruction. For details, see the description of the PLSY instruction.

3. To stop the comparison at the last record, set the last output data of the table as 0. Under this situation, other DHST and DHSP instructions will be invalid. But at this time, the DHSP instruction is not regarded as a high speed instruction when it comes to the number limit of high-speed instructions.

4. The DHSP instruction will be validated only by pulse input. You cannot validate the instruction by changing the counter value with instructions such as DMOV or MOV.

5. DHSP (DHSCI, DHSCS, DHSCR, DHST, DHSZ) can be used repeatedly. However, at most the first six such instructions can be driven at the same time.

6. In a user program, the DHSP and DHST instructions cannot be valid at the same time. That means a valid DHSP (or DHST) instruction will make the following DHST (or DHSP) instructions invalid.

7. The maximum frequency supported by the PLC high speed counters will be seriously affected by instructions like DHSCS, DHSCI, DHSCR, DHSZ, DHSP and DHST. For details, see *Chapter 8 Using High Speed I/O*.

### Example

The table for comparison is shown below:

Compar	rison data	Output data (to	SD180 & SD181)	Operation flow
Most significant bit	Least significant bit	Most significant bit	Least significant bit	operation now
D100=0	D101=100	D102=0	D103=1	1↓
D104=0	D105=200	D106=0	D107=2	2↓
D108=0	D109=300	D110=0	D111=3	3↓
D112=0	D113=300	D114=0	D115=4	4 ↓
D112-0	D113-300	D114-0	0115-4	Return to 1

I ne following is the user program	The follow	ina is the	e user pi	rogram:
------------------------------------	------------	------------	-----------	---------

	[	DMOV	100	100 D100	]			
		107	0	0	1		LD	SM1
	ľ	MUY	U	102	1		DMOV	100 D100
	Æ	MOV	1	D103	]		MOV	0 D102
	ŀ	DMOV	200	200 D104	1		MOV	1 D103
	ľ	DIIIOY	200	0	1		DMOV	200 D104
	Æ	MOV	0	D106	]		MOV	0 D106
	L.	MOV	2	2 D107	1		MOV	2 D107
	ľ	11107	2	300	1		DMOV	300 D108
	ł	DMOV	300	D108	]		MOV	0 D110
	ŀ	мох	0	0 D110	1		MOV	3 D111
	ľ	11107	0	3	1		DMOV	100 D112
	Æ	MOV	3	D111	]		MOV	0 D114
	ŀ	DMOV	100	100 D112	1		MOV	4 D115
	ľ	Dillor	100	0	1		LD	MO
	Æ	MOV	0	D114	]		HCNT	C244 1000
	ŀ	MOV	4	4 D115	1		LD	M1
MO	Ľ	1101	0	5110			DHSP	D100 4 C244
<b></b>	-[	HCNT	C244	1000	]		LD	M2
M1		กษรษ	100 D100	4	0 C244	1	OUT	SM244
#2	L	SM244	D100	7	0244	1	LD	C244
<u> </u>		<					OUT	Y10
C244		^{۲10} ر					LD	M3
			1		OFF		PLSY	SD180 0 YO
		PLSY	SD180	0	YO	1		

1. In the first user-program scan cycle, assign elements  $D100 \sim D115$  with values to generate the table for comparison.

2. When M0 and X6 are both ON, C244 will count when X0 changes from OFF to ON (for the input frequency, see *Chapter 8 Using High Speed I/O*). When C244 changes from 999 to 1000, the C244 contact will be set; when C244 changes from 1001 to 1000, the C244 contact will be reset. When the C244 contact drives Y10, the execution of Y10 will be determined by the user program scan cycle.

3. When M1 is ON, and the DHSP instruction meets the requirements in the preceding "Note", the compare will start with the first record. The compare with the second record will not start until the first compare is over and the output data has been output to SD180 & SD181. After the compare with the last record is over, the compare with the first record will start again, and SM185 will be set. SD184 is the SN of the present record, and SD182 & SD183 are the present data for comparison. The output data will be output to SD180 & SD181 immediately, regardless of the scan cycle. If you want to stop the at the last record, set the output data of the last record to 0.

4. When M2 is ON, and SM244 is ON, C244 will count down. When M2 is OFF, and SM244 is OFF, C244 will count up. 5. When X6 is OFF, C244 is invalid.

6. When M0 and X6 are both ON, if X2 is ON, C244 will be cleared, and the C244 contact will be reset.

## 6.10.8 SPD: Pulse Detection Instruction

LAD:								Арр	Applicable to			2 IVC1			
-1 112	47 - 2	910 - 13	SDV	(32)]	Influ	uenced	flag bit								
IL: SPD	(S1)	(S2)	(D)					Pro	gram st	eps	7				
Operand	Туре		Applicable elements												Offset addressing
S1	BOOL		Х												
S2	WORD	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	D	SD	С	Т	V	Z	
D	WORD								D				V		

### **Operand description**

**S1**: input point. Range: X0 ~ X5.

**S2**: time unit for input point detection. Unit: ms. Operand S2 > 0.

**D**: the storage register for the counted pulse number, which will cause overflow when bigger than 65535.

### **Function description**

To detect the number of pulses input through  $X0 \sim X5$  in the specified period of time (ms) and store the result in the designated storage register.

### Note

1. SPD and HCNT are contradictory in their occupation of hardware. For details, see *Chapter 8 Using High Speed I/O*.

2. The SPD instruction supports only input points X0  $\sim$  X5.

3. Maximum pulse input frequency: 10kHz. Detection may be faulty when frequency is higher than 10kHz.

4. The input frequency of SPD must be subject to the limit of system total pulse frequency.

### Example



The time sequence chart of the example program is shown below:







1. When M0 is ON, count the pulses input through X0 within 1000ms, and store the counting result in D10. D11 is the present counting value within the 1000ms, while D12 is the elapsed time within the 1000ms.

2. D10 is in positive proportion to the rotary speed of the plate in the preceding figure.

3. D10 counts whenever X0 changes from OFF to ON, and the counting value within the last 1000ms will be stored in D10.

6.10.9	PLSY:	Count Pulse	Output	Instruction
--------	-------	-------------	--------	-------------

LAD:								Ар	plicable	e to	IVC	2 IVC	1	
	<del>2)</del> [	PLSD>	(SI)]-		<del>2) [</del>	PL\$#)	(SI,	)] Inf	luenced	l flag bit				
IL: PLS	( (S1)	(S2)	(D)					Pro	ogram s	teps	9			
Operand	Type					A	Applicab	le elem	ents					Offset
	71													addressing
S1	DINT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	D	SD	С		V	
S2	DINT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	D	SD	С		V	
D	BOOL			Y										

### **Operand description**

*S1*: specified frequency (Hz). Range: 1 ~ 100,000 (Hz). When *S1* is outside this range, the system will report instruction operand error, and no hardware resources will be occupied.

Change **S1** during the execution of the instruction will change the output frequency in real time.

S2: output pulse number (PLS).

Range:  $0 \sim 2147483647$ . When **S2** is outside this range, the system will report instruction operand error, output no pulse, and no hardware resources will be occupied. When **S2** is 0, the pulse will output so long as the instruction is valid. If you change **S2** during the execution of the instruction, the change will be take effect in the next round.

D: high speed pulse output point. Range: Y0, Y1.

### **Function description**

To output specified amount of high speed pulses at the specified frequency. For that purpose, the load current on the PLC output transistor should be big, but below the rated load current.

### Note

1. The PLC must use the transistor output mode.

2. When the PLC outputs high-frequency pulses, the following load current for the PLC output transistor must be used.

3. The output loop (transistor) for PLSY, PWM and PLSR is shown as follows:



4. With large load, the transistor off time is relatively longer. The PWM, PLSY and PLSR instructions require that the transistor output terminal be connected to their corresponding loads. When the output waveform does not conform to the instruction operand, increase the load current of the transistor (the transistor load current ≤100mA).

5. During or after the execution of the high-speed instruction, no other instructions can use the same port, unless the high speed pulse output instruction is invalid.

6. Using two PLSY instructions can output two independent pulses at Y0 and Y1. You can also use PLSY and the PWM (or PLSR) instructions to get independent pulse outputs at different output ports (Y0, Y1).

7. When multiple PWM, PLSY or PLSR instructions work on the same output point, the first valid instruction will control the state of the output point, and others will not affect the output point state.

8. Just like other high speed instructions (DHSCS, DHSCR, DHSZ, DHSP, DHST and HCNT), the PLSY instruction must meet the system's requests on high speed I/O.

### Example



LD M1

PLSY 1000 10000 Y1

PLSR 1000 10000 Y0



1. When M1 is ON, 10,000 pulses will output through Y0 and Y1 at the frequency of 1000Hz. Then the pulse output will stop until M0 changes from OFF to ON when the next round of output will start. When M0 is OFF, there will be no output.

2. The duty cycle of the pulses is 50%. The output is handled in the interrupt mode, free from the scan cycle. For high frequency output, the output duty cycle at Y points is related to the load. The waveform at output points (Y0 & Port 0, Y1 & Port 1) is related to the load: so long as the current does not exceed

the rated load current, the smaller the load is, the closer the output wave form is to the set operand.

3. SM80 & SM81 controls the ON/OFF of the output at Y0 and Y1 respectively. When SM80 or SM81 is 1, the output is ON.

4. SM82 & SM83 are the output monitors of Y0 & Y1 respectively. SM82 or SM83 will be OFF after the output is complete.

5. SD50: the MSB of the output pulse number at Y0 for PLSY and PLSR instructions.

SD51: the LSB of the output pulse number at Y0 for PLSY and PLSR instructions.

SD52: the MSB of the output pulse number at Y1 for PLSY and PLSR instructions.

SD53: the LSB of the output pulse number at Y1 for PLSY and PLSR instructions.

SD54: the MSB of the total output pulse number at Y0 and Y1 for PLSY and PLSR instructions.

SD55: the LSB of the total output pulse number at Y0 and Y1 for PLSY and PLSR instructions.

6. SD50 ~ SD55 can be changed with the instruction DMOV or MOV, or through the ConstrolStar software.

7. Refer to the DHSP instruction if you want to use the input pulse number to control the PLSY output pulse frequency.

## 6.10.10 PLSR: Count Pulse With Acceleration/Deceleration Output Instruction

LAD:								Арр	licable	to	IVC2	IVC1			
1.5.71	R\$	<b>W 132</b>	101-	184	- 1	1284	152110	/ Influ	enced	flag bit					
IL: PLSI	R (S1)	(S2)	(S3)	(D)				Prog	gram st	eps	10				
Operand	Typo		Applicable elements										Offset		
Operanu	Type						Аррісар		1115						addressing
S1	WORD	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	D	SD	С	Т	V	Z	
S2	DINT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	D	SD	С		V		
S3	WORD	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	D	SD	С	Т	V	Z	$\checkmark$
D1	BOOL			Y											

## **Operand description**

**S1**: maximum frequency. Range:  $10 \sim 20,000$  (Hz). When **S1** is specified indirectly, and if the specified value is outside this setting range, it will be regarded as 10 or 20,000, depending on which limit it breaks. In that case, the system will report operand illegal, and the high speed pulse output will be based on the default 10Hz or 20,000Hz.

**S2**: total output pulse number (PLS). Range: 110 ~ 2147483647. When **S2** is outside this range, the system will report instruction operand error, output no pulse, and no hardware resources will be occupied.

**S3**: acceleration or deceleration time (ms). If **S1** × **S3** < 100,000, **S3** will be regarded as 100000/S1. Meanwhile the system will report instruction operand error, and the acceleration or deceleration time will be uncertain.

If *S1* × *S3* > *S2* × 909, *S3* will be regarded as S2 × 909/*S1*. Meanwhile the system will report instruction

operand error, and the acceleration or deceleration time will be uncertain.

### Note

For IVC1, the acceleration / deceleration time must not be smaller than 50ms.

The speed change is evenly divided into 10 steps during the acceration or deceleration, each step being **S1**/10.

**D**: high speed pulse output point. Range: Y0, Y1.

### **Function description**

The PLSR instruction is a high speed pulse output instruction with acceleration / deceleration function. It is used for locating. Targeting at the specified maximum frequency, the pulse output will accelerate evenly. After the output pulse number reaches the preset value, the pulse output will decelerate evenly.

### The operation process is shown in the following figure:



### Note

1. The output frequency of this instruction is  $10 \sim 20,000$  Hz. When the acceleration / deceleration rate exceeds that range, it will be automatically adjusted according to that range. This instruction is free from the influence of the scan cycle.

2. Use the transistor output. During the high speed pulse output, the output current must comply with the related regulations. The waveform at output points (Y0 & Port 0, Y1 & Port 1) is related to the load: so long as the current does not exceed the rated load current, the smaller the load is, the closer the output waveform is to the set operand.

3. During the execution of the high-speed instruction, so long as the power flow is not OFF, no other instructions can use the same port, unless the high speed pulse output instruction is invalid.

4. Using two PLSR instructions can output two independent pulses at Y0 and Y1. You can also use PLSR and the PWM (or PLSY) instruction to get independent pulse outputs at different output ports (Y0, Y1).

5. When multiple PWM, PLSY or PLSR instructions work on the same output point, the first valid instruction will control the state of the output point, and others will not affect the output point state.

6. Just like other high speed instructions (DHSCS, DHSCR, DHSZ, DHSP, DHST and HCNT), the PLSR instruction must meet the system's requests on high speed I/O.

### Example

M0		PLSR	10	110	1000	OFF Y1	]
	ł	PLSR	10	110	1000	OFF YO	]
LD	M0						
PLSR	10	110	1000	Y1			
PLSR	10	110	1000	Y0			

1. When M0 is ON, Y0 and Y1 output 110 pulses respectively at set frequencies. When M0 changes from OFF to ON, pulses will be output again. When M0 is OFF, the output will stop.

2. The operand change during the execution of the instruction will not be valid until the next time this instruction is executed.

3. SM80 & SM81 controls the ON/OFF of the output at Y0 and Y1 respectively. When SM80 or SM81 is 1, the output is ON.

4. SM82 & SM83 are the output monitors of Y0 & Y1 respectively. SM82 & SM83 will be ON when the output is going on, or OFF when the output is over.

5. SD50: the MSB of the output pulse number at Y0 for PLSY and PLSR instructions.

SD51: the LSB of the output pulse number at Y0 for PLSY and PLSR instructions.

SD52: the MSB of the output pulse number at Y1 for PLSY and PLSR instructions.

SD53: the LSB of the output pulse number at Y1 for PLSY and PLSR instructions.

SD54: the MSB of the total output pulse number at Y0 and Y1 for PLSY and PLSR instructions.

SD55: the LSB of the total output pulse number at Y0 and Y1 for PLSY and PLSR instructions.

6. SD50 ~ SD55 can be changed with the instruction DMOV or MOV, or through the AutoStation software.

6.10.11 PLS: Pulse Output Instruction of Envelope

LAD:						Арр	Applicable to			2 IVC	:1				
										flag bit	:				
IL: PLS	(S1)	(S2)	(D1)					Pro	gram s	teps	7				
Operand	Type						Annlicah	ام مامس	onte						Offset
operand	турс					,	hpiicab		1110						addressing
S1	WORD	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	D	SD	С	Т	V	Z	
S2	DINT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	D	SD	С		V		$\checkmark$
D1	BOOL			Y											

## **Operand description**

S1: the starting D element

S2: output section number. Range: 0 ~ 255

D1: high speed pulse output point. Range: Y0, Y1.

## **Function description**

1. Use the ConstrolStar instruction wizzard to generate the PLS instruction, which can be called like subprograms. When the power flow is ON, the system will output corresponding pulses according to the configuration. You can control ON or OFF of the PG, and set frequency & pulse number.

 There is no output when the section number is 0.
 SM80 and SM81 can be used to stop the high speed pulse output. Other flag bits are the same as other high speed I/O instructions.

4. The subprogram PLS_SET generated by the AutoStation is as follows (n: D element addr. M: total section number):

LD SM0 DMOV section 1 step frequency Dn DMOV section 1 step pulse number Dn + 2 DMOV section 2 step frequency Dn + 4 DMOV section 2 step pulse number Dn+ 6 DMOV section 3 step frequency Dn + 8 DMOV section 3 step pulse number Dn + 10

DMOV section M step frequency Dn + 4M - 4 DMOV section M step pulse number Dn + 4M - 2 DMOV max. speed Dn + 4M

MOV min. speed Dn + 4M + 2

MOV acceleration time Dn + 4M + 3

MOV deceleration time Dn + 4M + 4

### Note

1. It is recommended to use the PTO instruction wizard to generate PLS instruction. If you write the PLS instruction manually, note that the pulse number of the steps must not be too small. With set acceleration, the pulse number of each step must be bigger than the min. pulse number required by frequency transfer. 2. Use *P* to stand for the pulse number that a certain step outputs;  $F_N$ : frequency of section N;  $F_{max}$ : the maximum speed;  $F_{min}$ : the maximum speed;  $T_{up}$ : the acceleration time;  $T_{down}$ : the deceleration time.

1) When the speed of step N is bigger than that of step N-1, the pulse number of step N must meet the following condition:

$$P \ge \frac{(F_N + F_{N-1}) \times (F_N - F_{N-1}) \times T_{up}}{2000 \times (F_{max} - F_{min})}$$

2) When the speed of step N is smaller than that of step N - 1, the pulse number of step N must meet the following condition:

$$P \ge \frac{(F_N + F_{N-1}) \times (F_N - F_{N-1}) \times T_{down}}{2000 \times (F_{mm} - F_{mm})}$$

3. In particular,

1) when N = 1, the frequency of step N – 1 is used instead of  $F_{min}$  in the above format.

2) when all the step number is 1, that is to say, only one section, the pulse number must meet the following condition:

$$P \ge \frac{(F_1 + F_{\min}) \times (F_1 - F_{\min}) \times (T_{up} + T_{down})}{2000 \times (F_{\max} - F_{\min})}$$

3) The pulse number of the last step must meet the following format:

$$P \ge \frac{(F_{M} + F_{M-1}) \times (F_{M} - F_{M-1}) \times (T_{up} + T_{down})}{2000 \times (F_{max} - F_{min})}$$

4) the frequency set in every step must be within the range of maximum speed and minimum speed.5) The maximum total pulse number of all steps is 999,999.

4. Use the transistor output. During the high speed pulse output, the output current must comply with the related regulations. The waveform at output points (Y0 & Port 0, Y1 & Port 1) is related to the load: so long as the current does not exceed the rated load current, the smaller the load is, the closer the output waveform is to the set operand.

5. During the execution of the high-speed instruction, so long as the power flow is not OFF, no other instructions can use the same port, unless the high speed pulse output instruction is invalid. 6. The PLSY, PLSR, PLS and locating instructions can output high speed pulses through Y0 and Y1. Note

that only one instruction can use one output port at one time.

LAD	):									Applica	ble to	I	VC2 IV	C1		
<u> </u>							Influenc	ed flag l	bit							
IL:	PWM	(S1)	(S2)	( <i>D</i> )						Progran	n steps	7				
Оре	erand	Туре				Applicable elements								Offset addressing		
S	S1	INT	Operand	KnX	KnY	KnM	KnS	KnLM	KnSM	1 D	SD	С	Т	V	Z	√
5	S2	INT	Operand	KnX	KnY	KnM	KnS	KnLM	KnSM	1 D	SD	С	Т	V	Z	
	D	BOOL			Y											

### **Operand description**

### S1: pulse width (ms).

Range:  $0 \sim 32767$  (ms). When **S1** is bigger than 32767, the system will report illegal instruction operand, and no hardware resources will be occupied.

You can change the output pulses in real-time by changing *S1* during the execution of the instruction. *S2*: pulse cycle (ms).

Range: 1 ~ 32767. When S2 is outside the range, the system will report illegal instruction operand, no pulse will be output, and no system resources will be occupied.

You can change the output pulses in real-time by changing **S2** during the execution of the instruction. **S2** must be bigger than **S1**, or the system will report illegal instruction operand, no pulse will be output, and no system resources will be occupied.

**D**: high speed pulse output point (Y0 or Y1)

### **Function description**

Output PWM pulses with the width of *S1* and cycle of *S2* at the port designated by *D*.

### Note

1. When *S1* is 0, Y0 or Y1 output is OFF. When *S1* is equates *S2*, Y0 or Y1 output is ON.

The waveform at output points (Y0 & Port 0, Y1 & Port 1) is related to the load: so long as the current does not exceed the rated load current, the smaller the load is, the closer the output waveform is to the set operand. Therefore, in order to output high speed pulses, the load current at the PLC output transistor must be big, but smaller than the rated load current.
 During the execution of the high-speed instruction, so long as the power flow is not OFF, no other instructions can use the same port, unless the high speed pulse output instruction is invalid.

4. Using two PWM instructions can output two independent pulses at Y0 and Y1. You can also use

the PLSY and PLSR instructions to get independent pulse outputs at different output ports (Y0, Y1).

5. When multiple PWM, PLSY or PLSR instructions work on the same output point, the first valid instruction will control the state of the output point, and others will not affect the output point state.

6. Just like other high speed instructions (DHSCS, DHSCR, DHSZ, DHSP, DHST and HCNT), the PWM instruction must meet the system's requests on high speed I/O.

### Example



### LD M0



Where "t" is the pulse width and T0 is the pulse cycle. 1. When M0 is ON, Y0 and Y1 output PWM pulses with the width of 40ms and cycle of 200ms. When M0 is OFF, the output will stop. The output state is not affected by the scan cycle.

2. SM80 and SM81 control the output ON/OFF of Y0 and Y1 respectively. When SM80 and SM81 are ON, the output will stop.

3. SM82 and SM83 monitor the output of Y0 and Y1 respectively. When M0 is OFF, SM82 and SM83 are OFF.

# 6.11 Control Calculation Instruction

## 6.11.1 PID: PID Instruction

LAD:				_			Applicat	ole to	IVC2	IVC1		
<u>(33</u> )	—[	(3B)	(SI) (	v) (s2)	[	Influence	ed flag bit					
IL: PID	(S1)		(S2)	(S3)	(D)		Program	steps	9			
Operand	Туре					Applicable	elements				O addi	ffset ressing
S1	INT						D					
S2	INT						D					
S3	INT						D					$\checkmark$
D	INT						D					$\checkmark$

### **Operand description**

**D**: calculation result output after the program is executed (MV)

**S1**: preset value (SV)

S2: current value (PV)

**S3**: sampling time (Ts). Range: 1 ~ 32767 (ms). It must be set bigger than the calculation time.

### S3+1: action, alarm and thresholds setting

Bit	Value a	nd meaning				
Dit	0	1				
0	Forward	Reverse				
1	Process Value alarm disabled	Process Value alarm enabled				
2	Output value alarm disabled	Output value alarm enabled				
3~4	Reserved					
5	Output threshold setting disabled	Output threshold setting enabled				
6~15	Reserved					

**S3+2**: input filter constant ( a ). Range: 0 ~ 99 [%]. Zero means no input filtering function.

**\$3+3**: proportional gain (Kp). Range: 1 ~ 32767 [%]. **\$3+4**: integral time constant (TI). Range: 0 ~ 32767

(×100ms). Zero means limit, or no integral.

**\$3+5**: differential gain (KD). Range: 0 ~ 100[%]. Zero means no differential gain.

**S3+6**: differential time (TD). Range:  $0 \sim 32767$  (×10ms). Zero means no differential processing. **S3+7** ~ **S3+14**: internal data register for PID operation **S3+15**: PID process value (positive change) alarm point. Range:  $0 \sim 32767$  (when bit 1 of **S3+1** is 1). **S3+16**: PID process value (negative change) alarm point.  $0 \sim 32767$  (when bit 1 of **S3+1** is 1). **S3+17**: PID output value (positive change) alarm point  $0 \sim 32767$  (when bit 2 & bit 5 of **S3+1** are 1 & 0 respectively). Output upper limit: -32768 ~ 32767 (when bit 2 & bit 5 of **S3+1** are 0 & 1 respectively).

**\$3+18**: PID output value (negative change) alarm point. Range: 0 ~ 32767 (when bit 2 & bit 5 of **\$3+1** are 1 & 0 respectively).

Output lower limit: -32768 ~ 32767 (when bit 2 & bit 5 of S3+1 are 0 & 1 respectively).

S3+19: PID alarm output

- Bit 0 process value (positive change) overflows
- Bit 1 process value (negative change) overflows
- Bit 2 output value (positive change) overflows

• Bit 3 output value (negative change) overflows Where, S3 ~ S3 + 6 are the mandatory user set operands, while S3 + 15 ~ S3 + 19 are optional user set operands. You can set the operands through the PID instruction wizard of the AutoStation.

### **Function description**

1. PID calculation will be carried out when the power flow is ON and it is the sampling time.

2. Multiple PID instructions can be executed simultaneously (no limit on the loop number). However, note that the elements used as S1, S2, S3 or D should be different.

3. The PID instruction is applicable to timed interrupt subprograms, ordinary subprograms and the main program. Note that before using the PID instruction, confirm the operand settings and clear the internal data registers  $S3+7 \sim S3 + 14$  first.

4. The input filtering constant can smooth the change of measured value.

5. The differential gain can smooth the change of output value.

6. Action direction: bit 0 of **S3+1** is used to set the forward (positive reaction) and reverse (negative reaction) of the system.

7. Output thresholds: when the output threshold setting is enabled (bit 5 & bit 2 of **S3+1** are 1 and 0 respectively), the integral of PID can be controlled from becoming too big. The output value is shown as below:



8. Alarm setting: when the output thresholds are set valid (in S3+1, bit 1 is 1, BIT2 is 1 and bit 5 is 0), the PID instruction will compare the current value with the preset value in  $S3+15 \sim S3 + 18$ . If the current value is bigger than the preset value, PID will report alarm, and the corresponding bits in S3+19 will be set. In this way you can monitor the input change and output change. See the following figures.



### 9. Basic PID equations:

Direction	PID equations
Forward	$\begin{split} \Delta M \mathbb{V} &= \mathrm{KP} \left\{ \left( \mathrm{EV}_{\mathbf{x}^{-}} \mathrm{EV}_{\mathbf{x}^{-}1} \right) + \frac{\mathrm{T}_{s}}{\mathrm{T}_{r}} \mathrm{EV}_{\mathbf{x}^{+}} \mathrm{D}_{\mathbf{x}} \right\} \\ \mathrm{EV}_{n} &= \mathrm{PV}_{nf-1} - \mathrm{SV} \\ \mathrm{D}_{n} &= \frac{\mathrm{T}_{\mathrm{D}}}{\mathrm{T}_{s} + \alpha_{\mathrm{D}} * \mathrm{T}_{\mathrm{D}}} \left( \mathrm{PV}_{nf} + \mathrm{PV}_{nf-2} - 2  \mathrm{PV}_{nf-1} \right) + \frac{\alpha_{\mathrm{D}} * \mathrm{T}_{\mathrm{D}}}{\mathrm{T}_{s} + \alpha_{\mathrm{D}} * \mathrm{T}_{\mathrm{D}}} * \mathrm{D}_{n-1} \\ \mathrm{MV}_{n} &= \sum \Delta \mathrm{MV} \end{split}$
Reverse	$\begin{split} \Delta M \mathbb{V} &= KP \left\{ \left( E \mathbb{V}_{n-} E \mathbb{V}_{n-1} \right) + \frac{Ts}{Tr} E \mathbb{V}_{n+} D_n \right\} \\ E V_n &= S V - P V_{nf-1} \\ D_n &= \frac{T_D}{T_{S+} \alpha_D * T_D} \left( 2 P V_{nf-1} - P V_{nf-} P V_{nf-2} \right) + \frac{\alpha_D * T_D}{T_{S+} \alpha_D * T_D} * D_{n-1} \\ M V_n &= \sum \Delta M V \end{split}$

Operand description:

Symbol	Description	Symbol	Description
EV n	The current Error Value	D n	The current Differential Value
EVn-1	The previous Error Value	Dn-1	The previous Differential Value
SV	The Set Point Value	KP	The Proportion Constant
PVnf	The calculated Process Value	Ts	The Sampling Time
PVnf-1	The previsou Process Value	Т	The Integral Time Constant
PVnf-2	The second previous Process Value	T d	The Differential Time
ΔMV	The change in the output Manipulation Values	αd	The Differential gain
MV	The current output manipulation value		

Example												
// PID initia	lizatio	n. If tl	he control	opera	inds are the same, you can initialize the operands only once.							
LD	SM1			//Init	ialization, executed only once							
MOV	1000	C	D500	//Se	tting target value							
MOV	500		D510	//Sa	pling time (Ts) Range: 1 ~ 32767 (ms). It must be bigger than the							
				// ca	lculation time							
MOV	7		D511	//Act	tion direction							
MOV	70		D512		//Input filtering constant ( $\alpha$ ) Range: 0 ~ 99 [%]. Zero means no input filtering							
MOV	100		D513		//Proportional gain (Kp) Range:1 ~ 32767 [%]							
MOV	25		D514		//Integral time (TI) Range: 0 ~ 32767 (×100ms). Zero means limit, or no integral							
MOV	0 D515				//Differential gain (KD) Range: 0 ~ 100[%]. Zero means no differential gain							
MOV	63 D516				//Differential time (TD) Range: 0 ~ 32767 (×10ms). Zero means no differential							
					// processing							
FMOV	0		D517	8	//Clearing the memory for the transit data of PID calculation							
MOV	2000	C	D525		//Process value (positive change) alarm setting 0 ~ 32767							
MOV	2000	)	D526		//Process value (negative change) alarm setting 0 ~ 32767							
MOV	2000	)	D527		//Output value (positive change) alarm setting 0 ~ 32767							
MOV	2000	)	D528		//Output value (negative change) alarm setting 0 ~ 32767							
//PID instru	ction	execu	ition									
LD	M0			//Us	er-controlled PID calculation program							
FROM	0	5	D501		1 //Input current measured value (users can input measured values							
					<pre>// according to the actual situation)</pre>							
PID	D50	0 D50	01 D510 D	502	//PID instruction: PID S1 S2 S3 D							
ТО	0	8	D502		1 //PID calculation result is fed back to the controlled system (users can							
					// handle the PID calculation result according to the actual situation)							

	MOV	1000	1000 1500	]		
£	MOV	500	500 D510	1		
Æ	MOV	16#07	7 D511	1		
£	MOV	70	70 D512	1		
£	MOV	100	100 D513	1		
£	MOV	25	25 D514	1		
£	MOV	0	0 D515	1		
Æ	MOV	63	63 D516	1		
Æ	FMOV	0	5 1517	8	1	
Æ	MOV	2000	2000 10525	1		
£	MOV	2000	2000 D526	1		
Æ	MOV	2000	2000 1527	1		
ł	MOV	2000	2000 1528	1		
	FROM	0	5	631 0501	1	1
£	PID	1000 0500	631 D501	500 D510	886 D502	1
Ē	70	n	•	886		
		<pre>{ MOV { MOV {</pre>	[ MOV 1000 [ MOV 500 [ MOV 500 [ MOV 16#07 [ MOV 70 [ MOV 100 [ MOV 25 [ MOV 0 [ MOV 63 [ MOV 2000 [ MOV 200 [ MOV 200 [ MOV 200 [ MOV 200 [ MOV 200 [ MOV 200	[         MOV         1000         1000           [         MOV         500         D510           [         MOV         500         D510           [         MOV         16#07         D511           [         MOV         16#07         D512           [         MOV         100         D513           [         MOV         25         D514           [         MOV         25         D513           [         MOV         25         D515           [         MOV         63         D515           [         MOV         2000         D525           [         MOV         2000         D525	Image         Image <th< td=""><td>[         MOV         1000         1500         ]           [         MOV         500         J500         ]           [         MOV         500         J510         ]           [         MOV         16#07         J511         ]           [         MOV         16#07         J511         ]           [         MOV         100         J512         ]           [         MOV         100         J513         ]           [         MOV         25         J514         ]           [         MOV         0         D515         ]           [         MOV         63         B516         ]           [         MOV         2000         J525         ]           [         MOV         2000         J525         ]           [         MOV         2000         J525         ]           [         MOV         2000         D527         ]           [         MOV         2000         J526         ]           [         MOV         2000         J521         J           [         MOV         2000         J520</td></th<>	[         MOV         1000         1500         ]           [         MOV         500         J500         ]           [         MOV         500         J510         ]           [         MOV         16#07         J511         ]           [         MOV         16#07         J511         ]           [         MOV         100         J512         ]           [         MOV         100         J513         ]           [         MOV         25         J514         ]           [         MOV         0         D515         ]           [         MOV         63         B516         ]           [         MOV         2000         J525         ]           [         MOV         2000         J525         ]           [         MOV         2000         J525         ]           [         MOV         2000         D527         ]           [         MOV         2000         J526         ]           [         MOV         2000         J521         J           [         MOV         2000         J520

The LAD of the above instructions is shown below:

The PLC will initialize the PID operands only in the first scan cycle. When X2 is ON, the current measured value will be read from external A/D module (the actual

situation could be different), assigned to the corresponding elements, and the PID calculation will be carried out. The calculation result will be converted into analog signals through the external D/A module (the actual situation could be different) and fed to the controlled system.

### Note

1. The operand **D** should be a register outside of the Saving Range. Otherwise, it should be cleared (LD SM0 MOV 0 D****) in the first operation.

2. The PID instructions occupies 20 consecutive registers starting with **S3**.

3. The maximum error of sampling time (TS) is - (scan cycle + 1ms) ~ + (scan cycle). When TS is small, the PID effect will be affected. It is recommended to use PID instruction in the timed interrupt.

4. When setting the PID output thresholds, if the upper limit is smaller than the lower limit, the system will report operand error, and no PID calculation will be carried out.

5. When the process value alarm and output value alarm are enabled,  $S3 + 15 \sim S3 + 18$  cannot be set negative, or the system will report operand error, and no PID calculation will be carried out.

6. Setting bit 2 and bit 5 of **S3+1** ON at the same time will be regarded as invalid (essentially the same as setting bit 2 and bit 5 OFF), and there will be no limit, nor output value alarm.

7. When the PID control operands ( $S3 \sim S3 + 6$ ) are set outside their ranges, the system will report operand error, and no PID calculation will be carried out.

8. When the sampling time is smaller than the scan cycle, if there is data overflow or result overflow during the calculation, there will be no alarm, and the PID calculation continues.

9. The PID operands must be initialized before the PID instruction is executed the first time. If the operands remain the same during the operation, and the related operand elements will not be covered by other programs, you can initialize the PID operands only once. However, if the data in the transit data registers are changed during the PID calculation, the calculation result will be incorrect.

## 6.11.2 RAMP: Ramp Wave Signal Output Instruction

LAD:									Applica	ble to	ľ	VC2 IV	/C1		
V - 1 (2+++	-Z 2004800	0 (21) (03)	(22)	1 (11)	) <u> </u>	(82)	Influenced flag bit								
IL: RAM	P (S1	) (S2)	(E	<b>)1</b> )	(S3)		Progran	n steps	12						
Operand	nd Type Applicable elements									Offset addressing					
S1	INT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	I D	SD	С	Т	V	Z	
S2	INT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	I D	SD	С	Т	V	Z	
D1	INT								D				V		
S3	INT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	I D	SD	С	Т	V	Z	
D2	BOOL			Y	М	S	LM				С	Т			

### **Operand description**

S1: starting value

- S2: end value
- D1: output value

**S3**: step number. **S3** >0, or system will report operand error. and do not execute the calculation.

D2: output state 0

### **Function description**

In each scan cycle, when the power flow is ON, this instruction can determine the increment and current output value **D1** according to the ramp wave height and step number. When the output value **D1** reaches **S2**, it will keep stable, and the output state **D2** will be set ON. If the power flow falls, the output state **D2** will be set OFF, but the output value **D1** will not change, until the power flow rises again, when **D1** will be initialized as **S1**, and continue to conduct the next ramp calculation.

See the following figure:



Analysis of the execution process of the ramp instruction is shown in the following figure (**S3=**5):



### Note

1. If the result is not divisible when calculating the program steps, round off to the nearest whole number.

2. The instruction will generate one ramp data upon every rising edge.

3. When **S1** = **S2**, **D1** = **S2**, **D2** = ON.

4. The total number of RAMP, HACKLE and TRIANGLE instructions in a program should not exceed 100.

### Example

//Initialize registers upon the first scan cycle after the power-on

LD	SM1
MOV	0 D0
MOV	2000 D1
//=	

//Execute RAMP instruction when X0 is ON



2000 310

1

1. When X0 is ON, D10 (in the first cycle, D10 = D0 = 0) will increase by 2 (2000/1000) in every scan cycle. When D10 = D1 = 2000, D10 will increase no more, and M0 will be ON. During the generation of the ramp function, if the power flow falls, the output state **D2** will be OFF, the output value **D1** will keep its current value until the next rising edge, when D10 = D0 and a new ramp starts.

2. You can use an external special module to convert the data into analog waveform.

## 6.11.3 HACKLE: Hackle Wave Signal Output Instruction

4

8

LAD:									Арр	licable	e to	IV	/C2 IV	C1		
V - 1 (142)	<u>еакня з</u>	a <i>(cr) (</i> az)	(\$2)	V - / a	<del>m 7 m</del>	0,000 (	(23).	Influenced flag bit								
IL: HAC	KLE (	S1) (S2	2)	(S3	1	Program steps 12										
Operand	Operand Type Applicable elements												Offset			
S1	INT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSI	М	D	SD	С	Т	V	Ζ	√ audiessing
S2	INT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSI	М	D	SD	С	Т	V	Ζ	$\checkmark$
D1	INT									D				V		$\checkmark$
S3	INT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSI	М	D	SD	С	Т	V	Ζ	V
D2	BOOL			Y	М	S	LM					С	Т			

## **Operand description**

S1: starting value

S2: end value

D1: output value

S3: step number. S3 > 0, or system will report operand error. and do not execute the calculationD2: output state

### **Function description**

In each scan cycle, when the power flow is ON, this instruction can determine the increment and current output value *D1* according to the hackle wave height and step number. When the output value reaches *S2*, it will be initialized as *S1* and the state output *D2* will be set ON. If the power flow in the next scan cycle is still ON, *D2* will be set OFF to produce the next hackle wave. If the power flow falls, the output state *D2* will be OFF, and the output value *D1* will keep its current value until the next rising edge, when the output value *D1* will be initialized as *S1*, and the next hackle wave will be created, as shown in the following figure.



The analysis of the hackle wave instruction is shown in the following figure (**S3**=5):



## Note

1. If the result is not divisible when calculating the program steps, round off to the nearest whole number.

2. The instruction will generate a series of continuous hackle wave data so long as the power flow keep ON

3. When **S1** = **S2**, **D1** = **S2**, **D2** = ON (no counting pulse)

4. The total number of RAMP, HACKLE and TRIANGLE instructions in a program should not exceed 100.

## Example

//Initialize registers upon the first scan cycle after power-on

LD SM1 MOV 0 D0 MOV 2000 D1 //Execute HACKLE instruction when X0 is ON LD X0 HACKLE D0 D1 D10 1000 M0 //When X1 is ON, output the result of ramp function to external DA module to generate hackle waveform

- LD X1
- TO 0 1 D10 1

The LAD for the preceding instruction is shown in the following figure:



1. When X0 is ON, D10 (in the first cycle, D10 = D0 = 0) will increase by 2 (2000/1000) in every scan cycle. When D10 = D1 = 2000, M0 will be ON. In the next scan cycle, if X0 keeps ON, D10 = D0 = 0, and M0 is OFF, the next hackle wave will start. If the power flow falls, the output state **D2** will be OFF, but the output value **D1** will keep its current value until the next rising edge, when **D1** will be initialized as **S1**, and a new hackle wave starts.

2. You can use an external special module to convert the data into analog waveform.

# 6.11.4 TRIANGLE: Triangle Wave Signal Output Instruction

LAD:									Applical	ble to	P	/C2 IV	C1		
- Aller	Nos <b>ere</b> r".	e Qirr a Garri da	4 (j) (march 1)	Contraction of the second	1077.001	( <b>1</b> 77, 1993)	1997 - C	Influenc	ed flag k	oit					
IL: TRIAN	GLE (S	S1) (S2	) (	D1)	(S3)		Program steps 12								
Operand	perand Type Applicable elements											Offset			
S1	INT	Constant	KnX	KnY	KnM	KnS	Knl M	KnSM	D	SD	C	Т	V	7	
01		Ochistant				Kino			5	00	0		V		
52	INT	Constant	KNX	KNY	KNIVI	KNS	KNLIM	KNSM	D	5D	C	I	V	Z	N
D1	INT								D				V		
S3	INT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	D	SD	С	Т	V	Z	
D2	BOOL			Y	М	S	LM				С	Т			

### **Operand description**

S1: starting value

- S2: end value
- D1: output value

*S3*: step number. *S3* > 0, or system will report operand error, and do not execute the calculation.

D2: output state

### **Function description**

In each scan cycle, when the power flow is ON, this instruction can determine the increment and current output value *D1* according to the triangle wave height and step number. When the output value reaches *S2*, the rising half of the triangle is complete, the increment direction of the output value will change and generate the falling half of the triangle. When the output value *D1* reaches *S1* again, the state output *D2* will be set

ON. In the next scan cycle, if the power flow keeps ON, the state output **D2** will be set OFF and the next triangle will be generated. If the power flow falls, the output state **D2** will be OFF, the output value **D1** will keep its current value until the power flow rises again, when **D1** will be initialized as **S1**, and a new triangle wave will start. See the following figure:



The analysis of the execution of the triangle instruction is shown in the following figure (S3 = 5):



### Note

1. If the result is not divisible when calculating the program steps, round off to the nearest whole number. 2. The instruction will generate a series of continuous triangle wave data so long as the power flow keep ON 3. When S1 = S2, D1 = S2, D2 = ON (no counting pulse), the cycle of the triangle wave is (S3 - 1) × 2. 4. The total number of RAMP, HACKLE and TRIANGLE instructions in a program should not exceed 100.

### Example

// Initialize registers upon the first scan cycle after power-on

LD	SM1
MOV	0 D0
MOV	2000 D1

//Executie TRIANGLE instruction when X0 is ON LD X0

TRIANGLE D0 D1 D10 1000 M0

// When X1 is ON, output the result of ramp function to external DA module to generate triangle waveform

The LAD of the preceding instruction is shown in the following figure:



1

1. When X0 is ON, D10 (in the first cycle, D10 = D0 = 0) will increase by 2 (2000/1000) in every scan cycle. When D10 = D1 = 2000, the rising half of the triangle is complete, and D10 will decrease by 2 in every scan cycle that follows. When D10 = D0 = 0, a complete triangle is complete, and M0 is ON. In the next scan cycle, if X0 keeps ON, and M0 is OFF, the next triangle wave will start. If the power flow falls, the output state **D2** will be OFF, but the output value **D1** will keep its current value until the next rising edge, when **D1** will be initialized as **S1**, and a new triangle wave starts. 2. You can use an external special module to convert the data into analog waveform.

#### 6.12 Communication Instruction

## 6.12.1 Modbus: Modbus Master Station Communication Instruction

LAD:	. 5	-		1. 10			s) beals	- -	Applicat	ole to	N	/C2	VC1	
7 1 14	2) ~ %	(1016165) (5	1) 7	- 1 04	(4)	_ 38304045	2) (21)		Influenc	ed flag b	it			
IL: Modt	ous (S	1) (S2)	(S3)	)					Program	n steps	8			
Operand	Туре						Applica	able el	ements					Offset addressing
S1	INT	Constant												
S2	INT	D	V											
S3	INT	D												V
Operand	descrin	otion						E	Example					

### **Operand description**

- S1: designated communication channel
- S2: starting address of the data to be transmitted
- S3: starting address for storing the received data

## **Function description**

1. When being a master station, when the input conditions are met, the system will transmit the data stored in the unit starting with S2, and then receive the data and save it to the unit starting with S3.

2. When being a slave station, the system needs no instruction control for transceiving data.

3. This instruction is executed upon the rising edge.

### Note

1. Sending data through Modbus, whether the data is in RTU mode or ASCII mode, you only need to store the RTU-mode data into the unit starting with S2. You do not need to store the starting character, ending character and checksum, because they will be added to the data automatically in the sending process.

2. You do not need to set the length for the data to be sent. The system will set the length automatically based on the instruction.



3. The data, when received through Modbus, will be stored in RTU-mode, regardless of whether you set it in RTU mode or ASCII mode. That is, when you set the data to ASCII mode, the system will automatically convert them to hexadecimal, remove the starting character and ending character, and save them in the data area starting with S3.

4. The sent and received data are stored in the low bytes of the word element. High bytes are not used.

#### MOV -3 DO 1 MOV 1 D1 ] MOV 0 Π2 1 DЗ MOV 10 ] MOV 5 D4 1 SM124 D100 - MODBUS DO 1 ] LD SM1 MOV 3 D0 MOV 1 D1 MOV 0 D2 10 D3 MOV

MOV 5 D4

AND SM124

Modbus 1 D0 D100

1. Store the data sent through Modbus into the element starting with D0.

2. Store the data received in the elements starting with D100.

3. After receiving data through Modbus, the system will conduct CRC check, address check and instruction check. If there is any error, the error flag (SM136) will be set, and the error details will be recorded in the special register SD139.

The communication error codes are shown below: Code Description

0x01	Illegal instruction
0x02	Illegal register address
0x03	Wrong number of data
0v10	Communication timeout. The communication
0,10	exceeds the preset communication time limit
0x11	Error in receiving data frame
0v12	Operand error. Operand (mode or master/slave)
0712	setting error
0v13	Error occurs because t he local station SN is the
0.15	same as that set by the instruction

For the detailed application methods, see Chapter 10 Using Communication Function.

## 6.12.2 IVFWD: FREQUENCY CONVERTER Forward Rotation Instruction

LAD:										ole to	IN	/C1		
<del> \$1)</del>     -	-(\$2)	IVEWD ]	<del>SI)</del>	$+ \vdash$		VFWD ]		1	nfluenc	ed flag k	bit			
IL: IVFW	/D (S1)	(S2))		I	Program	steps	6							
Operand	Туре						Applica	able eler	nents					Offset addressing
S1	INT	Constant												
S2	WORD	Constant	D	V										V

### **Operand description**

*S1*: designated communication channel (channel 1)*S2*: drive address. Broadcast mode. Broadcast address: 00. Slave address range: 1 ~ 247.

### **Function description**

1. Control the drive forward running through communication in the Modbus protocol.

2. This instruction is executed upon the rising edge.

### Note

The total number of the instructions for the Modbus communication between PLC and drive does not exceed 128.

### Example

	M1 ⊣	IVFWD	1	1	]
LD	M1				

IVFWD 1 1

Set serial port 1, drive address #1, and control the drive forward running through communication in the Modbus protocol.

After the drive receives the data, it will conduct CRC check, address check and instruction check and set

the communication completion flag (SM135) after the communication. If there is any error, the error flag (SM136) will be set, and the error details will be recorded in the special register SD139. The error codes in FREQUENCY CONVERTER instruction communication are listed below:

Error code	Description
0x1	Illegal instruction
0x2	Illegal register address
0x3	Data error. The data exceed the range
0×4	Slave operation failure, including the error caused
0,4	by invalid data within the data range
0x5	Instruction valid, processing. It is used to store
0,0	data to EEPROM.
0x6	Slave busy, please try again later. It is used to
0,0	store data to EEPROM.
0x18	Information frame error, including the information
0,10	length error and check error
0x20	The parameter cannot be modified
0v21	The parameter cannot be modified in the RUN
0.21	state (only EV3100 supports this function)
0x22	The parameter is protected by password

## 6.12.3 IVREV: FREQUENCY CONVERTER Reverse Rotation Instruction

LAD:									Applicat	ole to	IN	/C1		
<del>(SI)</del>	$\vdash$	\$2/TVREV	]	<del>(SI)</del>	4  -	<u> </u>	AVREV	]	Influenc	ed flag k	bit			
IL: IVREV	(S1)	(S2)							Program	steps	6			
Operand	Туре						Applic	cable el	ements					Offset
S1	INT	Constant												addressing
S2	WORD	Constant	D	V										

### **Operand description**

S1: designated communication channel (channel 1)
S2: drive address. Broadcast mode. Broadcast address: 00. Slave address range: 1 ~ 247.

### **Function description**

1. Control the drive reverse running through communication in the Modbus protocol.

2. This instruction is executed upon the rising edge.

### Example



1. Set the serial port 1, drive address #1, and control the drive reverse running through communication in the Modbus protocol.

2. After the drive receives the data, it will conduct CRC check, address check and instruction check, and set the communication completion flag (SM135) after the communication. If there is any error, the error flag (SM136) will be set, and the error details will be recorded in the special register SD139.

## 6.12.4 IVDFWD: FREQUENCY CONVERTER Touch Forward Rotation Instruction

LAD:								-	Applicat	ole to	IN	/C1		
127) /	1 6	<b>2</b> 5)7ADA#	D]	Cu)	$\left( \right)$	-(82)	N ALVA	$v_{7}$	Influenc	ed flag bi	it			
IL: IVDF	WD (S	1) (S2)							Program	ı steps	6			
Operand	Туре						Applic	able ele	ements					Offset addressing
S1	INT	Constant												
S2	WORD	Constant	D	V										

### **Operand description**

**S1**: designated communication channel (channel 1)

**S2**: drive address. Broadcast mode. Broadcast

address: 00. Slave address range: 1 ~ 247.

### **Function description**

Set the serial port and drive address, and control the drive jog forward running through communication in the Modbus protocol.

### Example

I	M1		LD	M1		
	└──┤ └───{ IVDFWD	1	1 ] IVE	FWD	1	1

Set the serial port 1 and drive address #1, and control the drive jog forward running through communication in the Modbus protocol.

## 6.12.5 IVDREV: FREQUENCY CONVERTER Touch Reverse Rotation Instruction

LAD:			line 1.		And the		Applicat	ole to	IN	/C1				
	202.00	-20002-2	1	1	_	98,270 9	927/	12	Influenc	ed flag k	bit			
IL: IVDR	EV (S1	l) (S2)							Program	ı steps	6			
Operand	Typo						Appli	abla al	omonte					Offset
Operatio	туре						Арріі		ements					addressing
S1	INT	Constant												
S2	WORD	Constant	D	V										$\checkmark$

### **Operand description**

*S1*: designated communication channel (channel 1)*S2*: drive address. Broadcast mode. Broadcast

address: 00. Slave address range: 1 ~ 247.

### Function description

1. Set the serial port and drive address, and control the drive jog reverse running through communication in the Modbus protocol.

2. This instruction is executed upon the rising edge.

### Example

M1			LD	M1	
IVDREV	1	1 ]	IVD	REV	11

1. Set the serial port 1 and drive address #1, and control the drive jog reverse running through communication in the Modbus protocol.

2. After the drive receives the data, it will conduct CRC check, address check and instruction check, and set the communication completion flag (SM135) after the communication. If there is any error, the error flag (SM136) will be set, and the error details will be recorded in the special register SD139.

## 6.12.6 IVSTOP: FREQUENCY CONVERTER Stop Instruction

LAD:								Applicable to			C1			
1400		til 120		14	<u>e / 1</u>	1 ASTRO	V 189)	74	Influenc	ed flag b	it			
IL: IVST	OP (S1	') (S2)	(S3)						Program	n steps	8			
Operand	Туре						Applic	able e	ements					Offset addressing
S1	INT	Constant												
S2	WORD	Constant	D	V										V
S3	WORD	Constant	D	V										$\checkmark$

### **Operand description**

S1: designated communication channel (channel 1)

S2: drive address. Broadcast mode. Broadcast

address: 00. Slave address range: 1 ~ 247.

S3: drive stop mode.

There are three stop modes: stop mode 0 (stop), stop mode 1 (free stop), stop mode 2 (JOG stop).

### **Function description**

1. Set the serial port and drive address, and control the drive jog reverse running through communication in the Modbus protocol.

2. This instruction is executed upon the rising edge.

### Example

	M1 ⊣ ├───{ IVSTOP	1	1	0	]
LD	M1				

## IVSTOP 1 1 0

1. Set the serial port 1, drive address #1, and the drive stop mode 0 (stop according to the set deceleration time), and control the drive stop through communication in the Modbus protocol.

## 6.12.7 IVFRQ: FREQUENCY CONVERTER Set Frequency Instruction

LAD:	—[ I	VFRQ <i>(S1)</i>	)	(52)	ŀ	(53)		]	Applicable to Influenced flag	bit	IVC1	
IL: IVFRQ	(S1)	(S2) (S3)							Program steps		8	
Operand	Туре						Appl	icable	elements			Offset addressing
S1	INT	Constant										
S2	WORD	Constant	D	V								V
S3	WORD	Constant	D	V								

### **Operand description**

*S1*: designated communication channel (channel 1)*S2*: drive address. Broadcast mode. Broadcast

address: 00. Slave address range: 1 ~ 247.

S3: frequency of the drive

### **Function description**

1. Set the serial port and drive address, and control the drive operation frequency through communication in the Modbus protocol.

2. This instruction is executed upon the rising edge.

## Example



1. Set the serial port 1 and drive address #1, and control the drive operation frequency through communication in the Modbus protocol.

## 6.12.8 IVWRT: FREQUENCY CONVERTER Write Single Register Value Instruction

LAD:	-6314	ae)		<i>}4444)</i>	<u> </u>	-lestycera	(54)	Applicable to	IVC1			
IL: IVWF	RT (S1)	(S2) (	'S3)	(S4)				Program steps	10			
Operand	Туре	Applicable elements										Offset addressing
S1	INT	Constant										-
S2	WORD	Constant	D	V								$\checkmark$
S3	WORD	Constant	D	V								$\checkmark$
S4	WORD	Constant	D	V								

### **Operand description**

S1: designated communication channel (channel 1)

S2: drive address. Broadcast mode. Broadcast

address: 00. Slave address range: 1 ~ 247.

S3: register address

S4: register value

### **Function description**

1. Set the serial port and drive address, input the register address and register value, and the corresponding register will be assigned with the set value through communication in the Modbus protocol.

2. This instruction is executed upon the rising edge.

## Example

	M1 ⊣	Ţ	MOV	1	DO	]	
		ł	IVWRT	1	1	D10	
D	M1						

1

MOV 1 D0

IVWRT 1 1 D10 1

1. Set the serial port 1 and drive address #1, input the register address 1 (digital frequency control) and register value 1 (disable frequency saving upon power-off), and write the value into the corresponding register through communication in the Modbus mode.

LAD:									Applicabl	e to	IVC2	IVC1		
<del>(82) </del>	-ESIARI	ST (81)	1	<del>(31)</del>		(SSEARDST)	(91)	]	Influence	d flag bit				
IL: IVRD	OST (S1	l) (S2)	(S3)	(Ľ	D1)				Program	steps	10			
Operand	Туре						Applie	cable	elements					Offset addressing
S1	INT	Constant												
S2	WORD	Constant	D	V										$\checkmark$
S3	WORD	Constant	D	V										$\checkmark$
D1	WORD	D												V

## 6.12.9 IVRDST: FREQUENCY CONVERTER Read Status Instruction

## **Operand description**

S1: designated communication channel (channel 1)

**S2**: drive address. Broadcast mode. Broadcast address: 00. Slave address range: 1 ~ 247.

address. 00. Slave address lange. 1 ~ 2

S3: status information selection

0	Running status word	4	Output voltage
1	Actual operation value in the current main setting	5	Running speed
2	Drive model	6	Operation fault information
3	Output current		

D1: storage address of the returned status information

### **Function description**

1. Read the FREQUENCY CONVERTER status information through communication in the Modbus protocol.

2. This instruction is executed upon the rising edge.

## Example

 $\begin{matrix} M1 \\ \vdash \downarrow \vdash [ IVRDST 1 1 1 DO \\ LD M1 \end{matrix}$ 

IVRDST 1 1 1 D0

1. Set the serial port 1, drive address #1, read status information selection 1 (actual running value in the current main setting) and set D0 as the storage register for the returned status information. Read FREQUENCY CONVERTER status information through communication in the the Modbus protocol.

## 6.12.10 IVRD: FREQUENCY CONVERTER Read Single Register Value Instruction

LAD:								Applicable to	IVC1		
<del>(22)</del>	{\$\$ <u>1</u> \$}	a) <i>(SI)</i>	1	<del>(52)</del>	<u>н</u>	SQ VED	(B1)	Influenced flag bit			
IL: IVRD	) (S1)	(S2) (S	3) (Ľ	<b>D1</b> )				Program steps	10		
Operand	Туре						Applicab	e elements			Offset addressing
S1	INT	Constant									
S2	WORD	Constant	D	V							$\checkmark$
S3	WORD	Constant	D	V							$\checkmark$
D1	WORD	D									

### **Operand description**

S1: designated communication channel (channel 1)

S2: drive address. Broadcast mode. Broadcast

address: 00. Slave address range: 1 ~ 247.

S3: address of the register to read

**D1** storage address of the returned value

### **Function description**

1. Read a single FREQUENCY CONVERTER register through communication in the Modbus protocol.

2. This instruction is executed upon the rising edge.

## Example



]

IVRD 1 1 D10 D20

1. Set the serial port 1, drive address #1, read register address 2 (initially set frequency of the drive) and set D20 as the storage register for the returned value. Read a single FREQUENCY CONVERTER register through communication in the Modbus protocol.

## 6.12.11 XMT: Free-Port Sending (XMT) Instruction

LAD:									Applical	ble to	N	/C2 IV	C1		
1.460	+1 <b>64-1</b> -11100 1001 <del>11</del> 11 <del>00-1</del> -11100 100								Influenc	ed flag l	oit				
IL: XMT	(S1)	(S2) (S	3)						Program	n steps	-	7			
Operand	Туре						Applic	cable (	elements						Offset addressing
S1	INT	Constant													Ŭ
S2	WORD	D	V												
S3	INT	Constant	KnX	KnY	KnM	KnS	KnLM		D	SD	С	Т	V	Z	

### **Operand description**

S1: designated communication channel. Range: 0, 1

- **S2**: starting address of the data to be sent
- S3: number of bytes to be sent

## **Function description**

When the power flow is valid, and the communication conditions are met, the designated data will be sent through the designated channel.

## Note

1. Size of communication frame: depending on the element type (D or V) of the communication frame, the ending character of the frame does not exceed D7999 or V63.

2. In case of shutdown, the sending will stop.

### **Special register**

1. SM110/SM120: Sending enabled flag. It will be set when the XMT instruction is used and cleared when the sending is completed. When it is reset, the current sending stops.

2. SM112/SM122: sending completed flag. When it is judged that the sending is completed, the sending completed flag will be set.

3. SM114/SM124: Idle flag. When the serial port has no communication task, it will be set, and it can be used as the checking bit for communication.

4. For detailed examples of the application, please refer to Chapter 10 Communication Function Use Instruction.

## Example

L						
	[	TON	TO	100	]	
	[	RST	TO	]		
	£	MOV	16#1	DO	]	
	£	MOV	16#0	D1	]	
	£	MOV	16#1	D2	]	
	£	MOV	16#1	D3	]	
	£	MOV	16#2	D4	]	
	£	RST	SM122	]		
	ł	XMT	1	DO	5	]
SM122	2 [	INC	D100	]		
LD	SM	10				
TON	т	) 1(	00			
LD	Т	0				
RST	Т	0				
MOV	16	6# 1	D0			
MOV	16	6#0	D1			
MOV	1(	6#1	D2			
MOV	1(	6#1	D3			
MOV	10	6#2	D4			
RST	S	SM12	2			
ХМТ	1 E	00 5				
LD	S	M12	2			
INC	D	100				

In this example, one data frame is sent in every 10s.

The following data will be sent through serial port 1.

01 00 01 01 02

1. Set port 1 in the system block as free port, and then set the baud rate, parity check, data bit and stop bit.

2. Write the data to be sent into the transmission buffer area. For IVC2, only the low bytes of the word element will be sent.

3. Reset the sending completed flag (SM122) before sending the data.

4. When the sending is completed, set the sending completed flag (SM122).

## 6.12.12 RCV: Free-Port Receiving (RCV) Instruction

LAD:									Applicat	ole to	IN	/C2 IV	C1		
<i>@</i> ₽	<del>/</del> _[	RC <b>(152)</b>	(\$1)]		( <del>P)</del> —	-[ R(	X53) (	<i>[SI)</i> ]	Influenc	ed flag l	oit				
IL: RCV	(S1)	<i>(D)</i> (S	2)						Program	steps	-	7			
Operand	Туре						Applic	cable (	elements						Offset addressing
S1	INT	Constant													
D	WORD	D	V												
S2	INT	Constant	KnX	KnY	KnM	KnS	KnLM		D	SD	С	Т	V	Z	

### **Operand description**

*S1*: designated communication channel. Range: 0, 1*D*: starting address for storing the received data*S2*: maximum number of received bytes

### **Function description**

When the power flow is valid, and the communication conditions are met, limited amount of data will be received through the designated channel to the designated registers.

### Example

	[	RCV	1	D20	5	]
SM12:	³ ──{	INC	D100	]		
LD	SM	1				
RCV	1	D20	5			
LD	SM	123				
INC	D	100				

1. The instruction will be valid continuously as long as the power flow is valid. If you want to receive data only once, you can use a rising edge or special registers that are effective only once, such as SM1, to trigger the instruction.

2. For detailed application examples, refer to *Chapter*10 Using Communication Function.

### Note

Size of communication frame: depending on the element type (D or V) of the communication frame, the ending character of the frame does not exceed D7999 or V63.

The receiving stops upon shutdown.

The value range of S1: 0 and 1

### **Special register**

SM111 (SM121): Receiving enabled flag. It will be set when the RCV instruction is used and cleared when the sending is completed. When it is reset, the current receiving stops.

SM113 (SM123): receiving completed flag. When the receiving is completed, the receiving completed flag will be set.

SM114 (SM124): Idle flag. When the serial port has no communication task, it will be set, and it can be used as the checking bit for communication.

SD111 (SD121): Starting character, which can be set in the system block

SD112 (SD122): Ending character, which can be set in the system block

SD113 (SD123): Character time-out time, i.e. the maximum receiving interval between the two characters, which can be set in the system block SD114 (SD124): Frame time-out time: the time starting with the power flow and stops at the end of the receiving, which can be set in the system block SD115 (SD125): receiving completion code. The definition of the data bit is shown as follows:

User end receiving flag	Designated ending word received flag	Maxi. number of characters received flag	Inter- character time-out flag	(Frame) reception time-out flag	Parity check error flag	Reserved
Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bits 6 ~ 15

SD116 (SD126): The characters currently received SD117 (SD127): The character received previously

# 6.13 Data Check Instruction

## 6.13.1 CCITT: Check Instruction

LAD:									Applicat	ole to		IVC2	IVC1		
$\overline{V} \rightarrow c$	<del>7 (24</del>	(CLAD)	(SI)	7—	-/ (65)	-6 a	<u>am</u> :	(\$1)7	Influenc	ed flag l	bit				
IL: CCIT	т (	S1) (	S2)	(E	))				Program	n steps		7			
Operand	Type						Applic	ahla al	omonte						Offset
Operatio	туре						Applic		emento						addressing
S1	WORD								D				V		$\checkmark$
S2	INT	Constant	KnX	KnY	KnM	KnS	KnLM	KnS№	1 D	SD	С	Т	V	Z	V
D	WORD								D				V		$\checkmark$

### **Operand description**

### Example

**S1**: the starting element of the data to be checked

**S2**: the number of the data to be checked. **S2**  $\ge$  0, or the system will report operand error.

D: check result

### **Function description**

1. Conduct CCITT check on the **S2** data starting with **S1**, and assign the result to **D**.

2. The expression for CCITT check algorithm is: X^16+X^12+X^5+1

## Note

1. For the system will bring value of *D* into the operation each time the instruction is executed, make sure to clear *D* before executing the CCITT instruction.

2. The data within the checking data zone starting with **S2** are stored in byte mode by default. That is, the high bytes are taken as 0, and the check result has 16 bits.

SM1	r	HOV	18.000	0	1		
	1	MOA	10#00	00			
	Æ	MOV	16#11	17 D1	]	LD	SM1
				34		MOV	16#00 D0
	Æ	MOV	16#22	D2	]	MOV	16#11 D1
	f	MOV	16#33	51 D3	1	MOV	16#22 D2
	ľ	10000000	1004000	20	*	MOV	16#33 D3
	Æ	MOV	16#44	D4	]	MOV	16#44 D4
				85		MOV	16#55 D5
	Н	MOV	16#55	D5	l	MOV	16#66 D6
	f	MOV	16#66	102 D6	ĩ	MOV	16#77 D7
	2			110	-	LD	X0
	ł	MOV	16#77	D7	]	MOV	0 D100
XO	[	MOV	0	28097 D100	]	CCITI	D0 8 D100
	ť	CCITT	0 DO	8	28097 D100	]	

When X0 is ON, conduct CCITT check on the 8 data starting with D0, and the result is assigned to D100.

## 6.13.2 CRC16: Check Instruction

LAD:	<u>–</u> a	7000 13	21/-	1 <del>2</del> -2	77-	Applical	ole to ed flag l	۱۱ Dit	/C2 IV	C1					
IL: CRC16 (S1) (S2) (D)									Program	n steps		7			
Operand	Туре		Applicable elements											Offset addressing	
S1	WORD								D				V		
S2	INT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	1 D	SD	С	Т	V	Ζ	$\checkmark$
D	WORD								D				V		$\checkmark$

### **Operand description**

S1: the starting element of the data to be checkedS2: the number of the data to

be checked;  $S2 \ge 0$ , or the system will report operand error

D: check result

### **Function description**

1. Conduct CRC16 check on the *S2* data starting with *S1*, and assign the result to *D* unit.

2. The expression for CRC16 check algorithm is: X^16+X^15+X^2+1

### Note

1. For the system will bring value of **D** into the operation each time the instruction is executed, make sure to clear **D** before executing the CRC16 instruction.

2. The standard Modbus CRC check requires that the D element (checksum) be initialized as 16#FFFF, and the high/low byes (8 high, 8 low) shall be swapped.

3. The data within the checking data zone starting with **S2** are stored in byte mode by default. That is, the high bytes will be taken as 0, and the check result has 16 bits.

### Example

SM1	[	MOV	16#00	0 DO	1				
SAUS	£	MOV	16#11	17 D1	]		LD	SM1	
	£	MOV	16#22	34 D2	]		MOV	16#00	D0
	£	MOV	16#33	51 D3	]		MOV	16#11 16#22	D1 D2
	£	MOV	16#44	68 D4	]		MOV MOV	16#33 16#44	D3 D4
	£	MOV	16#55	85 D5	]		MOV	16#55	D5
	£	MOV	16#66	102 D6	]		MOV	16#66 16#77	D6 D7
	Ę	MOV	16#77	119 D7	1		LD MOV	X0	0
XO	[	MOV	0	57708 D100	1		CRC16	6 D0 8 D1	100
	ſ	CRC16	D DO	8	57708 D100	]			

When X0 is ON, conduct CRC16 check on the 8 data starting with D0, and the result is assigned to D100.

## 6.13.3 LRC: Check Instruction

LAD:									Applicable to			/C2	IVC1		
( <del>62) [</del> I.RØD) (ST)] ( <del>62) [</del> LR(D)									Influenc	ed flag k	bit				
IL: LRC	(S1)	(S2)	(	D)					Program	steps	7	7			
Operand	Туре		Applicable elements										Offset		
S1	WORD									√					
S2	INT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	1 D	SD	С	Т	V	Z	$\checkmark$
D	WORD								D				V		V

### **Operand description**

**S1**: the starting element of the data to be checked

**S2**: the number of the data to be checked. **S2**  $\ge$  0, or the system will report operand error

D: check result

### **Function description**

Conduct LRC check on the **S2** data starting with the **S1**, and assign the result to **D**.

### Note

1. For the system will bring value of **D** into the operation each time the instruction is executed, make sure to clear **D** before executing the LRC instruction.

2. The data within the checking data zone starting with *S2* are stored in byte mode by default. That is, the high bytes are taken as 0, and the check result has 8 bits and is stored in the low bytes of *D*.

## Example

-								
SM1	<u>r</u> [	MOV	16#0	0 DO	J			
	£	MOV	16#11	17 D1	]	LD	SM1	
	£	MOV	16#22	34 D2	1	MOV	16#00	D0
	Æ	MOV	16#33	51 D3	1	MOV	16#11	2 D2
	f	MOV	16#44	68 D4	1	MOV MOV	16#33 16#44	D3
	ſ	MOV	16#55	85 115	87 81	MOV	16#55	D5
	-	107	16#66	102 DC	27 24	MOV	16#77	D0 D7
	l	11104	10#00	119	8	LD MOV	M0 0	D100
MO	4	MOV	16#77	D7 36		LRC	D0 8 [	D100
	T	MOV	0	D100	] 36			
	կ	LRC	DO	8	D100			

When X0 is ON, conduct LRC check on the 8 data starting with D0, and the result is assigned to D100.
# 6.14 Enhanced Bit Processing Instruction

## 6.14.1 ZRST: Batch Bit Reset Instruction

LAD:	_63' M.	37 ] <del>[iii]</del>	47		\$V _7,57	"]/#			Applicat	ole to ed flag k	IV Dit	C2 IV	C1		
IL: ZRS	г (D)	(S)						Program	n steps	5	5				
Operand	Type						Applica	able eler	nents						Offset
															addressing
D	BOOL			Y	М	S	LM				С	Т			$\checkmark$
S	INT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	D	SD	С	Т	V	Z	$\checkmark$

## **Operand description**

D: destination operand

# Note

- S: source operand

# **Function description**

When the power flow is valid, reset S bit-elements starting with **D**.

Examp	le						
SMO	(	ZRST	<mark>off</mark> M10	10	]	LD SM0 ZRST M10 10	
When S	SM0	is ON	. the 10	) elements	s M10.	M10, M11, M12 M19 will be	

1. When a C element is reset, the counting value in it will also be cleared.

2. When a T element is reset, the timing value in it will also be cleared.

۷ J, ι, completely cleared.

# 6.14.2 ZSET: Set Batch Bit Instruction

LAD:					-	-		/	Applicat	ole to	IN	/C2 IV	C1		
<del>@)</del> -  ⊢	(\$)	ZSET ] (	<del>D)</del>		-(s) Zi	SET ]		I	nfluenc	ed flag l	bit				
IL: ZSET	Г ( <i>D</i> )	(S)						F	Program	steps		5			
Operand	Typo						Appli	abla ala	monte						Offset
Operand	туре						Арріі		ments						addressing
D	BOOL			Y	М	S	LM				С	Т			V
S	INT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	D	SD	С	Т	V	Z	V

## **Operand description**

D: destination operand

S: source operand

## **Function description**

When the power flow is valid, set S bit elements starting with **D**.

## Example

1	SMO			ON			LD	SM0	
		-[	ZSET	M10	10	]	ZSET	M10	10

When SM0 is ON, the 10 units M10, M10, M11, M12 ... M19, will all be set to 1.

## 6.14.3 DECO: Decode Instruction

LAD:									Applicat	ole to	N	/C2 IV	C1		
1 <del>(c)</del> / .	<u>(</u> 0	150 7	<del>(a)</del> ,	$\land \vdash$	- <u>(</u> U)	DECO	-		Influenc	ed flag l	oit				
IL: DEC	0 (S)	( <i>D</i> )							Program	ı steps		5			
Operand	Type						Appli	able e	lomonte						Offset
Operanu	туре						Арріі		lemento						addressing
S	WORD	Constant	KnX	KnY	KnM	KnS	KnLM	KnSⅣ	I D	SD	С	Т	V	Z	V
D	INT			KnY	KnM	KnS	KnLM	KnSⅣ	I D	SD	С	Т	V	Z	V

Operand description S: source operand

D: destination operand

# Note

1. Range of **S**: 0 to 15.

Example

2. If **S** is outside the range of  $0 \sim 15$ , **D** will not be changed when the power flow is valid. Instead, the system will report operand error.

# **Function description** When the power flow is valid,

set bit **S** in word element **D** to 1, and clear other bits.

SMO		_	4		LD	SM0	
	DECO	2	D9	]	DECO	2	D9

When the power flow is valid, bit 2 in D9 will be set as 1, other bits will be cleared.

## 6.14.4 ENCO: Encode Instruction

LAD:									Applicat	ole to	N	/C2 IV	C1		
<u> </u>	<b>P</b>	907 _ J.C.	¥,	-	t de la	962 - J	14		Influenc	ed flag l	bit				
IL: ENC	D (S)	( <i>D</i> )							Program	ı steps	4	5			
Operand	Typo						Appli	abla al	omonte						Offset
Operanu	туре						Арріі		ements						addressing
S	INT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	D	SD	С	Т	V	Z	V
D	INT			KnY	KnM	KnS	KnLM		D	SD	С	Т	V	Z	V

## **Operand description**

S: source operand

D: destination operand

#### **Function description**

When the power flow is valid, assign the number of the bit whose value is 1 in word element **S** to **D**.

## Note

When the value of multiple bits in S is 1, the smallest bit number will be written into D, as shown in the following figure:



#### Example



2#0010 D0

LD M0 ENCO 2#0010 D0

When the power flow is valid, operand 1 is 2#0010, bit 1 is 1, hence 1 is written into D0.

]

IVC Series Small PLC Programming Manual

LD

SM0

BITS 16#F0F0 D1

## 6.14.5 BITS: Counting ON Bit In Word Instruction

LAD:		2175 J/z	¢-/ )	<u> </u>	Ø! II	ע דוויד	7/ <del>1:</del> .	_	Applical Influenc	ole to ed flag l	۱۱ Dit	/C2  \	/C1		
IL: BITS	(S)	( <i>D</i> )							Program	n steps	4	5			
Operand	Туре						Applic	cable e	lements						Offset
S	INT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	I D	SD	С	Т	V	Z	addressing √
D	INT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSN	I D	SD	С	Т	V	Z	V

-[ BITS

#### **Operand description**

### Example

S: source operand

D: destination operand

SMO

**Function description** 

When the power flow is valid, count how many bits in operand S is 1, and store the result into **D**.

When the power flow is valid, it is counted that there are 8 bits whose value is 1 (ON status) in constant 16#F0F0, so 8 is stored into D1.

]

D1

16#FOFO

# 6.14.6 DBITS: Counting ON Bit In Double Word Instruction

LAD:		U18 J/t	¢-/	<u> </u>	£2/1111	נדיד	<i>.</i>	A	pplicat	ole to ed flag b	I\ bit	/C2 IV	C1		
IL: DBIT	'S (S)	(D)						P	rogram	steps	(	6			
Operand	Туре						Applic	able ele	ements						Offset addressing
S	DWORD	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	D	SD	С		V		$\checkmark$
D	INT			KnY	KnM	KnS	KnLM	KnSM	D	SD	С	Т	V	Z	$\checkmark$

## **Operand description**

S: source operand

D: destination operand

## **Function description**

When the power flow is valid, count how many bits in double word S is 1, and store the result into D.

## Example

-[ DBITS 16#FFOFF D10

]

LD SM0 DBITS 16#FF0FF D10

When the power flow is valid, it is counted that there are 16 bits whose value is 1 (ON status) in constant 16#FF0FF, so 16 is stored into D10.

# 6.15 Word Contactor Instruction

# 6.15.1 BLD: Word Bit Contactor LD Instruction

LAD:									Applica	ble to	IVC	2 IVC1			
	<del>52)</del>	BI <b>₩</b> (	(SI)		(52)	Ч В	щ <del>ь С</del>	(SI)	Influence	d flag bi	t				
IL: BLD	(S1)	(S2)							Program	steps	5				
Operand	Tuno						Appli	ooblo o	lomonto						Offset
Operanu	Type						Арріі		iements						addressing
S1	WORD		KnX	KnY	KnM	KnS	KnLM	KnSN	ΛD	SD	С	Т	V	Z	V
S2	INT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSN	ΛD	SD	С	Т	V	Z	$\checkmark$

Example

BLD

H.

1000 D0

the following operation.

5

Use the status of BIT5 (ON) in D0 (1000:

## **Operand description**

## S1: source operand

**S2**: designated bit,  $0 \le$  **S2**  $\le$  15, or system will report operand error

## **Function description**

Use the status of bit **S2** in element **S1** to drive the following operation.

# 6.15.2 BLDI: Word Bit Contactor LDI Instruction

LAD:									Applicat	ole to	IN	/C2 IV	C1		
	<del>52)</del>	вг <del>рт С</del>	(SD)-		(52)	-  BI	. <del>Þ∓-C</del>	(SI)	Influenc	ed flag l	oit				
IL: BLDI	(S1)	(S2)							Program	n steps	4	5			
Operand	Typo						Appli	cablo o	lomonte						Offset
Operanu	туре						Арріі		iements						addressing
S1	WORD		KnX	KnY	KnM	KnS	KnLM	KnS№	1 D	SD	С	Т	V	Z	$\checkmark$
S2	INT	Constant	KnX	KnY	KnM	KnS	KnLM	KnS№	1 D	SD	С	Т	V	Z	$\checkmark$

## **Operand description**

S1: source operand

**S2**: designated bit.  $0 \le$  **S2**  $\le$  15, or system will report operand error.

## **Function description**

Use the logic NOT of the status of bit **S2** in element **S1** to drive the following operation.

## Example

20	DORADORS	1000		YO	BLDI	D0 5
ł	BLDI	DO	5	$\mapsto$	OUT	Y0

2#0000001111101000) to determine the status of Y0 in

BLD D05

OUT YO

Use the logic NOT of the status of BIT5 (ON) in D0 (1000: 2#0000001111101000), which is OFF, to determine the status of Y0 in the following operation.

## 6.15.3 BAND: Word Bit Contactor AND Instruction

LAD:	2 <u>4</u>   1.	M <del>D-C</del> -1.	s] -	-	<u>.</u>	Lift	4 1	:0]-	Applica	ble to	IN	/C2 IV	C1		
Note: beca BAND inst	ause the truction is	logic relations displayed	onship I in LAD	is visu ) as BL	alized ii _D	n the d	iagram,	the	Influenc	ed flag l	bit				
IL: BA	ND	(S1) (S	S2)						Program	n steps		5			
Operand	IL:         BAND         (S1)         (S2)           Operand         Type         Applic														Offset addressing
S1	WORD		KnX	KnY	KnM	KnS	KnLM	KnSⅣ	D	SD	С	Т	V	Z	
S2	INT	Constant	KnX	KnY	KnM	KnS	KnLM	<b>KnS</b> <i>I</i>	D	SD	С	Т	V	Ζ	$\checkmark$

### **Operand description**

## Example

X0 BAND D0 5 CUT Y0 OUT Y0

**S1**: source operand **S2**: designated bit.  $0 \le S2 \le$ 15, or system will report operand error

# Function description

Take the status of bit **S2** in element **S1** and use it in serial connection with other nodes to drive the operation of the following operation. Take the status of BIT5 (ON) in element D0 (1000: 2#0000001111101000) and use it in serial connection with other nodes (X0: ON) to determine the status of Y0 in the following operation.

# 6.15.4 BANI: Word Bit Contactor AND Instruction

LAD:	- 14	47 n.Q	7	- A	<u>~</u>	1910	8- 10 j	7	Applicat	ole to	IV	/C2 IV	/C1		
Note: beca BANI instr	ause the ruction is	logic relation displayed	onship in LAD	is visu ) as BL	alized DI	in the d	liagram,	the	Influenc	ed flag I	bit				
IL: BAN	I (S1	) (S2)							Program	ı steps	ŧ	5			
IL:         BANI         (S1)         (S2)           Operand         Type         Applica									lements						Offset addressing
S1	WORD		KnX	KnY	KnM	KnS	KnLM	<b>KnS</b> M	1 D	SD	С	Т	V	Z	
S2	INT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSN	1 D	SD	С	Т	V	Z	$\checkmark$

## **Operand description**

**S1**: source operand **S2**: designated bit,  $0 \le S2 \le 15$ , or system will report

operand error

## **Function description**

Take the logic NOT of the status of bit **S2** in element **S1** and use it in serial connection with other nodes to drive the operation of the following instruction.

## Example



OUT Y0 Take the logic NOT of the status of BIT5 (ON) in element D0 (1000: 2#0000001111101000), which is OFF, and use it in serial connection with

2#0000001111101000), which is OFF, and use it in serial connection with other nodes (X0: ON) to determine the status of Y0 in the following operation.

## 6.15.5 BOR: Word Bit Contactor OR Instruction

LAD:	-				~		<		Applic	able to	IN	/C2 IV	′C1		
Note: beca BOR instru	ause the uction is	logic relation displayed i	onship i n LAD a	is visu as BLI	alized D	in the d	the	Influen	ced flag	bit					
IL: BOR	(S1)	(S2)							Progra	m steps		5			
Operand	Туре						Applic	able ele	ements						Offset addressing
S1	WORD		KnX	KnY	KnM	KnS	KnLM	KnS₩	I D	SD	С	Т	V	Z	V
S2	INT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSⅣ	I D	SD	С	Т	V	Z	$\checkmark$

### **Operand description**

### S1: source operand

**S2**: designated bit,  $0 \le$  **S2**  $\le$  15, or system will report operand error

### **Function description**

Take the status of bit **S2** in element **S1** and use it in parallel connection with other nodes to drive the operation of the following instruction.

### Example



Take the status of BIT5 (ON) in element D0 (1000: 2#0000001111101000) and use it in parallel connection with other

2#0000001111101000) and use it in parallel connection with other nodes (X0: ON) to determine the status of Y0 in the following operation.

# 6.15.6 BORI: Word Bit Contactor ORI Instruction



## **Operand description**

S1: source operand

**S2**: designated bit,  $0 \le$  **S2**  $\le$  15, or system will report operand error

## **Function description**

Take the logic NOT of the status of bit *S2* in element *S1* and use it in parallel connection with other nodes to drive the operation of the following segment.

## Example



Take the logic NOT of the status of BIT5 (ON) in element D0 (1000: 2#0000001111101000), which is OFF, and use it in parallel connection with other nodes (X0: ON) to determine the status of Y0 in the following operation.

## 6.15.7 BOUT: Word Bit Coil Output Instruction

LAD:		-100							Applicat	ole to	IN	/C2  \	/C1		
<del>% /</del> /	_69/ DA	T J <del>ak</del>		_EV Bl	907 -	1/12			Influenc	ed flag l	oit				
IL: BOU	T (D)	(S)							Program	ı steps	4	5			
Operand	Type						Applic	abla al	omonte						Offset
Operatio	туре						Арріі		ements						addressing
D	WORD			KnY	KnM	KnS	KnLM		D		С	Т	V	Z	V
S	INT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	D	SD	С	Т	V	Z	$\checkmark$

### **Operand description**

S1: source operand

## Example



**S2**: designated bit.  $0 \le S2 \le 15$ , or system will report operand error.

### **Function description**

Assign the current power flow status to bit *S* of element *D*.

Assign the current power flow status (X0: ON) to BIT4 of element D0 (1000: 2#0000001111101000). After the execution, D0 = 1016 (2#0000001111111000).

# 6.15.8 BSET: Word Bit Coil Set Instruction

LAD:									Applical	ble to	IN	/C2 IV	C1		
#-	_6° B	&T ]/##	47	ß	17.577	~_]/ <del>ii</del>			nfluenc	ed flag k	oit				
IL: BSE	T (D)	(S)							Program	1 steps	4	5			
Operand	Type						Annlia	ahla al	omente						Offset
operand	турс						Аррік		Smento						addressing
D	WORD			KnY	KnM	KnS	KnLM		D		С	Т	V	Z	
S	INT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	D	SD	С	Т	V	Z	$\checkmark$

## **Operand description**

D: destination operand

**S2**: designated bit.  $0 \le$  **S2**  $\le$  15, or system will report operand error.

## **Function description**

Set bit S of element D.

## Example



When the power flow is valid, set BIT15 of element D0 (1000: 2#0000001111101000). After the execution, D0 = 33768 (2#1000001111101000).

# 6.15.9 BRST: Word Bit Coil Reset Instruction

LAD:								А	pplical	ole to	IN	/C2 IV	C1		
	en de la compañía de Compañía de la compañía	97 _ JA		- di	1437			Ir	nfluenc	ed flag l	bit				
IL: BRS	т (D)	(S)						Р	rogram	n steps	5				
Operand	Type						Applica	ahle ele	ments						Offset
operana	турс						rippiloc		nonto						addressing
D	WORD			KnY	KnM	KnS	KnLM		D		С	Т	V	Z	
S	INT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	D	SD	С	Т	V	Z	

## **Operand description**

**D**: destination operand

**S2**: designated bit.  $0 \le$  **S2**  $\le$  15, or system will report operand error.

## **Function description**

Reset bit S of element D.

## Example



When the power flow is valid, reset BIT8 of element D0 (1000: 2#0000001111101000). After the execution, D0 = 744 (2#0000001011101000).

# 6.16 Compare Contactor Instrucitons

# 6.16.1 Compare Integer LD (=, <, >, <>, >=, <=) Instrucitons

LAD:	4	F-C 18. [	n - n/- v/-	- /s	04 / 04 / 24 /		- C   L - C   L - L	9]- ]]- ]_	Applica	ble to	IN	/C2 I	VC1		
	4 4 4 - 1 4 - 1	- 129 P-(- 13, P-(- 12) P-(- 12) P-(- 12)	2/- 2/- 2/-	1.125 1.1 1.1 1.1			 		Influenc	ed flag I	oit				
IL:	LD=	(S1) (S1)	(5	52) 52)											
	LD< LD>	(S1) (S1)	(• (÷	S2) S2)											
	LD<>	(S1)	(	S2)					Progran	n steps	5				
	LD>=	(S1)	(	S2)											
	LD<=	(S1)	(	S2)											
Operand	Type						Annlia	ahla a	lements						Offset
operanu	Type						Аррік								addressing
S1	INT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSN	1 D	SD	С	Т	V	Z	
S2	INT	Constant	KnX	KnY	KnM	KnS	KnLM	KnS№	1 D	SD	С	Т	V	Z	$\checkmark$

## **Operand description**

S1: comparison parameter 1

S2: comparison parameter 2

#### **Function description**

Conduct BIN comparison on elements *S1* and *S2*, and use the comparison result to drive the following operation.

### Example

					LD= D0 D1
÷.	123	1000	-2000	YO	OUT Y0
£		DO	Ш	FK 2	LD< D0 D1
Ĩ	<	1000 D0	-2000 D1	⊢ ^{ĭ1} >	OUT Y1
		1000	-2000	¥2	LD> D0 D1
ł	>	DO	D1	H 🖬 >	OUT 2
8	2	1000	-2000	I Z IS	LD<> D0 D1
ÿ.,	$\langle \rangle$	DO	D1		OUT Y3
48	>=	1000 D0	-2000 D1		LD>= D0 D1
38.		1000	-2000	¥5	OUT Y4
£	<=	DO	D1	⊢< °`>	LD<= D0 D1
					OUT Y5

Conduct BIN comparison on the data of D0 and D1, and the comparison result is used to determine the output status of the following element.

LD

X0

LAD:															
- / 1 <del>60</del> / 160	4	47 A 40 A	I SDJ	2	AN STAN		< 10) - < 18	7_ 7_	Applical	ole to	IN	/C2 I	VC1		
	≤< <del>(62) \</del> ≉≺∕		() () () () () ()	10		<ul> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> </ul>	A A A A A A A	12) -{©	Influenc	ed flag t	oit				
IL:	AND=	- (S	51)	(S2)											
		< (; > (;	S1) S1)	(S2) (S2)											
	AND	<> (	S1)	(S2)					Program	n steps	5				
	AND AND	>= (* <= (*	S1) S1)	(S2) (S2)											
Operand	Туре						Applic	able el	ements						Offset addressing
S1	INT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSⅣ	1 D	SD	С	Т	V	Z	
S1	INT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	1 D	SD	C	Т	V	Z	

# 6.16.2 Compare Integer AND (=, <, >, <>, >=, <=) Instruction

#### **Operand description**

## Example

S1: comparison parameter 1

S2: comparison parameter 2

## **Function description**

Conduct BIN comparison on elements *S1* and *S2*, and use the comparison result in serial connection with other nodes to drive the following operation.

						AND=	D0 D1
						OUT	Y0
						LD	X1
		=	10000 D0	2000 D1		AND<	D0 D1
	¥1		10000	2000	¥1	OUT	Y1
-	–‴⊢–	<	DO	D1	⊢( [*] )	LD	X2
	X2	5525	10000	2000	¥2	AND>	D0 D1
		$\rightarrow$	DO	D1		OUT	Y2
	ХЗ	0	10000 TO	2000 D1	ц ^{Y3}	LD	X3
	V4		10000	2000	V4	AND<>	D0 D1
_		≻=	DO	D1		OUT	Y3
	X5		10000	2000	¥5	LD	X4
	$\neg$	<=	DO	D1	$\vdash$ >	AND>=	D0 D1
						OUT	Y4
						LD	X5
						AND<=	D0 D1
						OUT	Y5

Conduct BIN comparison on the data of D1 and D2, and use the comparison result in serial connection with other nodes to determine the output status of the following element.

## 6.16.3 Compare Integer OR (=, <, >, <>, >=, <=) Instruction



## **Operand description**

- S1: comparison parameter 1
- S2: comparison parameter 2

## **Function description**

Compare elements *S1* and *S2*, and use the comparison result in parallel connection with other nodes to drive the following operation.

## Example



Compare elements D0 and D1, and use the comparison result in parallel connection with other nodes to determine the output status of the following element.

LAD:	4 4 4 4 4 4	# # #	r/ r/		04/ 04/ 04/	A .	C 13) C 13) C 13)		Applical	ble to	N	/C2 IV	C1	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	%+{ /2 D}+-( ( ≈_{-/ /2)	27/		694) - (52) 694/	/ <i>U</i> # -  U		97- (SD) 77-	Influenc	ed flag k	oit			
IL:	LDD= LDD< LDD> LDD<> LDD>= LDD<=	(S1) (S1) (S1) (S1) (S1) (S1)	(S (S) (S) (S) (S) (S)	2) 2) 2) 2) 2) 2) 2)					Progran	n steps	7			
Operand	Туре						Applic	able el	ements					Offset addressing
S1	DINT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSN	1 D	SD	С		V	V
S2	DINT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSN	1 D	SD	С		V	N

6.16.4 Compare Double Integer LDD (=, <, >, <>, >=, <=) Instruction

Operand description

S1: comparison parameter 1S2: comparison parameter 2

Function description

Compare elements *S1* and *S2*, and use the comparison result to drive the following operation.

Example

					LD= D0 D2
Ĩ.	D=	100000 DO	200000 D2		OUT Y0
<u> </u>		100000	200000	V1	LD< D0 D2
ł	D<	DO	D2	⊢< <mark>□</mark> >	OUT Y1
145		100000	200000	¥2	LD<> D0 D2
ł	D>	DO	D2	н ^с >	OUT Y2
		100000	200000	¥3	LD>= D0 D2
ł	D<>	DO	D2		OUT Y3
-15	D≻=	100000 D0	200000 D2	⊢()	LD>= D0 D2
26		100000	200000	75	OUT Y4
Ð	D<=	DO	D2	⊢< 📮 >	LD<=D0 D2
					OUT Y5

Compare (D0, D1) and (D2,D3), and use the comparison result to determine the output status of the following element.

6.16.5 Compare Double Integer ANDD (=, <, >, <>, >=, <=) Instruction

LAD:	- 4 - 4														
1 1.50	4 / .	0 4 - C - 6.	\$Q]-	$ \rightarrow $	tet -		-64	201-							
- / 192	<u>4</u>	0 4 (6.	87]-	$ \rightarrow $	li -	(\	-66	821-	Applica	ble to	N	/C2	IVC1		
	////	D <mark>}−−(</mark> U	(SI)		(S2)	- T	≫ — ((\$1)							
	4/ 1	NOC 6	£0]-	$ \rightarrow $	1 821 /	1 Dy	26 10	871-							
K	33)	D) ⊢− C	(SI)		(S2)	- D	≻ ((SI)	Influen	ced flag I	bit				
- 1 192	24 1	04-6 6	\$27/-	-//	ti de la compañía de la compa	1 14	-66	\$2] -							
IL:		= (S1	1)	(S2)											
	ANDD	< (S1)	(S2)											
	ANDD)> (S1)	(S2)											
	ANDD	<> (S1)	(S2)					Program	n steps	7				
	ANDD)>= (S1)	(S2)											
	ANDD	<= (S1)	(S2)											
Operand	Tuno						Applia		omonto						Offset
Operand	туре						Applic		ements						addressing
S1	DINT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSⅣ	1 D	SD	С		,	V	
S2	DINT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSN	1 D	SD	С		,	V	\checkmark

Operand description

S1: comparison parameter 1

S2: comparison parameter 2

Function description

Compare elements *S1* and *S2*, and use the comparison result in serial connection with other nodes to drive the following operation.

Example								
							LD LDD= OUT LD	X0 D0 D2 Y0 X1
XO	-	D=	50000 D0	50000 D2		0	LDD<	D0 D2
X1	-1	D<	50000 D0	50000 D2	۲ ب	1 >	LD	X2
X2	ł	D>	50000 D0	50000 D2	⊢ ^r	2 >	LDD<> OUT	D0 D2 Y2
X3	-1	D⇔	50000 D0	50000 D2	⊢< ^r	3 、	LD LDD<>	X3
X4	-1	D≻=	50000 D0	50000 D2	r ⊢≺ ∎	4	OUT	Y3
X5	1	D<≃	50000 D0	50000 D2	⊢⊂ ^r	5 う	LD LDD>=	X4 D0 D2
							OUT LD LDD<= OUT	Y4 X5 D0 D2 Y5

Compare (D0, D1) and (D2,D3), and use the comparison result in serial connection with other nodes to determine the output status of the following element.

6.16.6 Compare Double Integer ORD (=, <, >, <>, >=, <=) Instruction

LAD:	н р. н р.	(SI)- (SI)- (SI)-	+++ (S ++ (S	#H #H) (51)) (51)			Applica	ble to	ľ	VC2 I	IVC1	
	Щ D∳ Ц D⊁ 		+++ es =++ es 	स्थ स्रम् ।) (31)) (31)			Influenc	ed flag l	bit			
IL:	ORD= ORD< ORD> ORD< ORD> ORD>	= (S (S) > (S) = (S = (S	1) 1) 1) 1) 1) 1)	(S2) (S2) (S2) (S2) (S2) (S2) (S2)					Progran	n steps	7	,		
Operand	Туре						Applic	able ele	ements					Offset addressing
S1 S2	DINT DINT	Constant Constant	KnX KnX	KnY KnY	KnM KnM	KnS KnS	KnLM KnLM	KnSM KnSM	D	SD SD	C C		V	√ √
	,										-	1		

Operand description

S1: comparison parameter 1S2: comparison parameter 2

Function description

Compare elements *S1* and *S2*, and use the comparison result in parallel connection with other nodes to drive the following operation.

Example

	XO				١D	X0
4	D=	100000 D0	20000 D2		ORD= OUT	D0 D2 Y0
L					LD	X1
-	P /	100000	20000		ORD<	D0 D2
1	<u>л</u> <	DO	ШZ	r	OUT	Y1
	X2				LD	X2
		100000	20000		ORD<>	D0 D2
H	D>	DO	D2	Ŕ	OUT	Y2
L	ХЗ			¥3	LD	X3
1	231 231	100000	20000		ORD>=	D0 D2
H	$\mathtt{D} \diamondsuit$	D0	D2	μ	OUT	Y3
	X4			2 <u>Y4</u>	LD	X4
	10-10	NEW DOOR	100000		ORD>=	D0 D2
H.	D≻=	100000 D0	20000 D2	μ	OUT	Y4
	X5			¥5	LD	X5
F	않 없	SUSTRA10	9293995	v	ORD<=	D0 D2
ł	D<=	100000 DO	20000 D2	μ	OUT	Y5

Compare (D0, D1) and (D2,D3), and use the comparison result in parallel connection with other nodes to determine the output status of the following element.

6.16.7 Compare Floating Point Number LDR Instruction

LAD:		R= R<	(S1) (S1)	(<i>S2</i> (<i>S2</i>))	Ц))	Applicat	ole to	IN	/C2 IV	C1	
		NA RA RA RA	-kas) Kas)	201 201 201 201 201 201 201 201 201 201		2 2 8)=-(8)=-(55 55	Influenc	ed flag k	bit			
IL:	LDR=	(S1)	(S2)									
	LDR<	(S1)	(S2)										
	LDR>	(S1)	(S2)										
	LDR<:	> (S1)	(S2)					Program	ı steps	7			
	LDR>	= (S1)	(S2										
	LDR<:	= (S1)	(S2)										
Operand	Type					Applica	ble ele	ements					Offset
oporana	.,,,,					, .ppiloo							addressing
S1	REAL	Constant						D				V	
S2	RAEL	Constant						D				V	

Operand description

Function description

S1: comparison parameter 1

S2: comparison parameter 2

Compare elements S1 and

result to drive the following

operation.

S2, and use the comparison

Example

ii.

48	R=	1000.200 TO	. 1000.299. D2		YO	3	OUT
0.45	643	1000.000	1000.000	82-03		- 1990) 1	LDR<
н	R<	1000.200 DO	1000. 299. D2	Ĩ			OUT
		1000.200.	1000.299.		¥2		LDR>
Н	r>	DO	D2	Ĩ		2	OUT
20		1000.200.	. 1000, 299.		¥3		LDR<>
н	R	DO	D2	F			OUT
		1000,200.	. 1000, 299.	- 10 B	¥4		LDR>=
۲	K/=	DO:	IJZ	F		2	OUT
н	R<=	1000,200 DO	. 1000.299. D2		¥5	>	LDR<=

Compare (D0, D1) and (D2,D3), and use the comparison result determine the output status of the following element.

LDR=

LDR<=

OUT

D0 D2

D0 D2

Y1 D0 D2

Y2

Y3

Y4

D0 D2

Y5

D0 D2

D0 D2

Y0

LAD:															
		R FC RFC AS				ht -	22		Applicat	ole to	IV	C2	IVC1		
	() () ()	201	(51) 1000		1000 1	- m		en st							
	Z 1,	27 D	- H	- /A	S.	Alt-	- 2	1	Influenc	ed flag bit	t				
-1 15	÷4 - 1	15-6 1	\$2] -	-/ /	24	Rf	60	871-							
IL:	ANDR	= ((S1)	(S2)											
	ANDR	< (S1)	(S2)											
	ANDR	> (S1)	(S2)											
	ANDR	<> (S1)	(S2)					Program	ı steps	7				
	ANDR	(>= (S1)	(S2)											
	ANDR	(<= (S1)	(S2)											
0	T						A								Offset
Operand	туре						Аррііс	adie ei	ements						addressing
S1	REAL	Constant							D					/	
S2	REAL	Constant							D				١	/	\checkmark

Example

6.16.8 Compare Floating Point Number ANDR Instruction

Operand description

S1: comparison parameter 1*S2*: comparison parameter 2

Function description

Compare elements *S1* and *S2*, and use the comparison result in serial connection with other nodes to drive the following operation.

-							
						LD	XU
						ANDR=	D0 D2
9225						OUT	Y0
XO	12213	10000.01	1000.3	29	YO	LD	X1
	R=	DO	D2	F.)	ANDR<	D0 D2
X1	-	10000.01	1000.)	29	Y1	OUT	Y1
	K<	μŪ	102	F)	LD	X2
X2	P\	10000.01	1000.1	29.	Y2	ANDR<>	D0 D2
	h/	00	D2			OUT	Y2
X3	R	10000.01 DO	1000.: 112	29	13 D	LD	X3
1	** 57	10000.01	1000			ANDR<>	Y3
74	R≻=	10000.01 D0	1000.) D2	∠9)	LD	X4
XS		10000-01	-1000	29 .	YS	ANDR>=	D0 D2
	R<=	DO	D2	Ĩ	٠̈́ >	OUT	Y4
5004 48						LD	X5
						ANDR<=	D0 D2
						OUT	Y5

Compare (D0, D1) and (D2,D3), and use the comparison result in serial connection with other nodes to determine the output status of the following element.

6.16.9 Compare Floating Point Number ORR Instruction

Operand description

- S1: comparison parameter 1
- S2: comparison parameter 2

Function description

Compare elements *S1* and *S2*, and use the comparison result in parallel connection with other nodes to drive the following operation.

Example

	XO			YO S		NO
	100	10000 50	10000.50	a second		
ł	R=	DO	D2 4		ORR=	DU D2
	X1			¥1	001	Y0
_	\dashv \vdash	1.75 (577) 555797		2	LD	X1
18	D/	10000.50.	: 10000.50		ORR<	D0 D2
	U/	DO	1)2 F		OUT	Y1
					LD	X2
		10000.50	. 10000. 50		ORR>	D0 D2
4	R>	DO	D2 4		OUT	Y2
	ХЗ			Y3	LD	X3
	Les a	10000 50	10000 50	s (2005)	ORR<>	D0 D2
ł	\mathbf{R}	DO	D2 1		OUT	Y3
	X4			<u>Y4</u>	LD	X4
		97752565568	NOTION OF A DECK	· <u> </u>	ORR>=	D0 D2
Ð	R>=	10000.50., DO	. 10000. 50. D2		OUT	Y4
	X5			15	LD	X5
	-(]			>	ORR<=	D0 D2
4	R<=	10000.50 DO	: 10000, 50. D2 P		OUT	Y5

Compare (D0, D1) and (D2, D3), and use the comparison result in parallel connection with other nodes to determine the output status of the following element.

6.17 Locating Instructions

6.17.1 Setting Up An Absolute Position System

The absolute position system obtains the absolute position data of the servo motor by detecting the the current position and the total cycle number of the motor PG. In this way, we can set up an absolute coordinates system of the mechanical position. The following figure is a schematic diagram of an absolute position system:

Figure 6-1 Absolute position system

As shown in the figure, the PG of an absolute position system is special because it is battery backed, which protects its position data and total cycle number upon power failure. That means even after a power failure, the servo amplifier can obtain the current absolute position data after power on.

After power on, the PLC can obtain absolute position data from the servo amplifier through communication. PLC can then use its locating instructions to control the servo amplifier and motor to realize precision positioning over mechanical parts, and automatically refreshes its absolute position data. In this way, a positioning system based on absolute position coordinates can be set up.

6.17.2 Overview Of Locating Instructions For IVC Series PLC

The IVC series small PLC provides locating instructions, including ZRN, PLSV, DRVI, DRVA and ABS, to control various servo amplifiers and servo motors in the absolute position system. The absolute locating data is available through the corresponding servo amplifier.

6.17.3 Mechanical Diagram Of Absolute Position System

The mechanical diagram of the absolute position system that is based on the locating instructions of IVC series small PLC is shown in the following figure.

Figure 6-2 Absolute position system based on locating instructions of IVC series small PLC

In this system, the servo motor drives the screw rod, which in turn drives the workbench. The location of the workbench in the stroke is detected by an absolute PG. During the zero return, the servo motor will decelerate to the crowling speed when the proximity sensor detects the fore-end of the workbench. When the proximity sensor detects the rear-end of the workbench, it sends the zero returned signal to the PLC to stop high speed pulse output. Note that the forward limit switch and backward limit switch are a must. Because the zero return instruction (ZRN) is incapable of auto-searching the proximity signal, the zero return operation must start earlier than where the proximity sensor is located. You can jog-adjust the position of the workbench through designing and programming.

6.17.4 Points To Note For Using Locating instructions ZRN, PLSV, DRVI And DRVA

Transistor output

IVC series small PLC with transistor output must be used.

Requirements of locating instructions during programming

The locating instructions can be used repeatedly in the program. However, note that:

1. One high speed pulse output point (Y0 or Y1) can be driven only by one locating instruction (or high speed instruction) at any time.

2. After the power flow of one locating instruction turns OFF, it cannot turn ON before the next PLC scan cycle.

Notes on using instructions PLSY, PLSR and PLS at the same time

From the functional perspective, it is recommended to use DRVI in stead of high speed pulse output instructions PLSY, PLSR and PLS, because the DRVI instruction can update the absolute position registers SD80 ~ SD83 automatically. The registers SD80 ~ SD83 can be used to store the present absolute position after the locating instruction is used. Their values are based on the change of registers SD50 ~ SD53 and the control signal direction when the locating instruction is executed. In this way, SD80 ~ SD83 and SD50 ~ SD53 are inter-related. Do not write SD50 ~ SD53 when locating instructions are being executed, or SD80 ~ SD83 will be messed up.

If it is necessary to use locating instructions and high speed pulse output instructions PLSY, PLSR or PLS at the same time, do write a PLC program so that registers SD80 ~ SD83 can be updated correctly.

Limits on the actual output frequency of locating instructions

The minimum frequency of the actual output pulse upon the execution of locating instructions is limited by the following formula:

$$F_{\min_acc} = \sqrt{\frac{F_{\max} \times 500}{T}}$$

Where F_{max} is the highest frequency set in SD85 or SD86, T is the acceleration or deceleration time (unit: ms) set in SD87, and the result F_{min_acc} is the minimum output frequency.

If the output frequency specified in the locating instruction is F, the possible three output frequencies are:

- No output, when F is smaller than the minimum frequency or bigger than $F_{\rm max}$
- $F_{\min acc}$ (when F < $F_{\min acc}$)
- F (when $F_{\min acc} \leq F \leq F_{\max}$)

6.17.5 Notes On Servo Amplifiers

Set the pulse input mode of the servo amplifier or stepping drivers like this:

- Pulse train input mode: instruction pulse + instruction direction
- Pulse string logic: negative logic (effective on the trailing edge)

6.17.6 Special Elements Related To Locating instructions

Monitors of high speed pulse output channels

Addr.	Name	Function	R/W	IVC2	IVC1	Remark
SM80	Y0 high speed pulse	Y0 high speed pulse output stop	R/W	\checkmark	\checkmark	Setting SM80 and SM81 respectively
	output control	instruction				can disable the high speed pulse
SM81	Y1 high speed pulse	Y1 high speed pulse output stop		./	./	output of Y0 and Y1, and resetting
ONIO I	output control	instruction	1.7.00	N.	~	SM80 & SM81 enables the function
SM82	Y0 high speed pulse	Y0 high speed pulse output	P	./	./	SM82 and SM83 can be used to
510102	output monitor	mointor (ON: busy. OFF: ready)	IX.	v	v	monitor the state of high speed
SM83	Y1 high speed pulse	Y1 high speed pulse output	D	/	/	
51005	output monitor	monitor (ON: busy. OFF: ready)	IX.	v	v	
						When SM85 is set, the CLR signals
SM85	Clearing function	Output of CLR signal for ZRN			./	for high speed outputs Y0 and Y1
01000	enabled	instruction enabled	1.0.00		·••	are output through Y2 and Y3
						respectively

Note

If SM85 is set, when the ZRN instruction is executed, Y2 or Y3 will output a CLR pulse with the width of 20ms longer than the scan cycle. If Y2 or Y3 is used for other purposes, you should reset SM85 to disable that function.

Addr.	Name	R/W	IVC2	IVC1	Initial value	Remark
SD80	Current value of Y0 output locating instruction (MSB)	R/W	V1.29	\checkmark	0	SD80 ~ SD83 are used to store and calculate the absolute position. Their values
SD81	The current value of Y0 output locating instruction (LSB)	R/W	V1.29	\checkmark	Ū	are based on SD50 ~ SD53 and the control signal direction when the locating
SD82	The current value of Y1 output locating instruction (MSB)	R/W	V1.29	\checkmark	0	instruction is executed. Whenever the PLC is ON and the absolute position data is read
SD83	The current value of Y1 output locating instruction (LSB)	R/W	V1.29	\checkmark		from the servo amplifier, put the position data (32-bit integer) into SD80 or SD82
SD84	Basic frequency of executing of instructions ZRN, DRVI and DRVA	R/W	V1.29	\checkmark	5000	1. You can change SD84, SD85, SD86 and SD87 according to the actual need.
SD85	Highest frequency of executing of instructions ZRN, DRVI and DRVA (MSB)	R/W	V1.29	\checkmark	100000	However, do not make the change during the execution of locating instruction, or the instruction may fail.
SD86	Highest frequency of executing of instructions ZRN, DRVI and DRVA (LSB)	R/W	V1.29	\checkmark	100000	2. The SD84 basic frequency must be smaller than 1/10 of SD85 highest frequency, or SD84 will be set automatically
SD87	Acceleration or deceleration time of executing of instructions ZRN, DRVI and DRVA	R/W	V1.29	\checkmark	1000	as 1/10 of highest frequency. When the frequency in a locating instruction is smaller than the basic frequency or higher than the highest frequency, no pulse will be output

Special data registers for locating instructions

6.17.7 ZRN: Regress To Origin Instruction

LAD:									Applica	ble to	Г	VC2 IV	C1		
- all and -	Grand All all from the all go								Influenc	ed flag l	bit Z	ero, car	ry, borro	w	
IL: ZRN	(S1)	(S2)	(S3)	(D)					Progran	n steps		11			
Operand	Type						Annlic	ahla al	ements						Offset
operand	турс						Аррію		cificilits						addressing
S1	DINT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	1 D	SD	С		V		\checkmark
S2	DINT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	1 D	SD	С		V		\checkmark
S3	BOOL		Х	Y	М	S									
D1	BOOL			Y											

Operand description

S1: zero return speed, specifying the zero return start speed

32-bit instruction: 10 ~ 100,000 (Hz)

S2: crawling speed, specifying the relatively low speed when the proximity signal is ON

S3: Proximity signal, specifying the X point for inputting proximity signal

If a non-X element is specified, the position offset of the zero point will increase due to the influence of the PLC calculation cycle.

D: starting address (Y0 or Y1) of the high speed pulse output

Function description

When SM85 clearing function is enabled, the CLR signals for high speed pulse outputs Y0 and Y1 are

output through Y2 and Y3 respectively. When SM85 is set, the CLR signals will be output to the servo amplifier through Y2 and Y3.

Note

1. Because the ZRN instruction is incapable of searching the proximity signal automatically, the zero return operation must start earlier than where the proximity sensor is located.

2. During the return to zero process, the value of the current value register will decrease.

3. Pay attention to the configuration of SD84 \sim SD87 when using this instruction.

4. When the instruction input frequency is smaller than SD84, there will be no high speed output at Y0 or Y1. When the instruction input frequency is bigger than SD85 or SD86, the output will be abnormal.

Time sequence chart

6.17.8 PLSV: Variable Speed Pulse Output Instruction

LAD:			,			Applicable to			IVC2 IVC1						
1 11											g bit	Zero, Carry, Borrov			w
IL: PL	IL: PLSV (S) (D1) (D2)										s	8			
Operand	Туре	Type Applicable elements										Offset addressing			
S	DINT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	D	SD	С		V		\checkmark
D1	BOOL			Y											
D2	BOOL			Y	М	S									

Operand description

S: output pulse frequency (Hz)

32-bit instruction: 10 ~ 100,000(Hz), -1 ~ -100,000(Hz)

D1: high speed pulse output starting address (Y0 or Y1)

D2: rotating direction signal output starting address. Its state is determined by **S**:

- When **S** is positive: **D2** is ON
- When S is negative: D2 is OFF

Function description

1. You can change **S** even in the state of outputing high speed pulses

2. Because there will be no acceleration or deceleration during the start & stop, if buffer is needed during the start or stop, it is recommended to use the RAMP instruction to change the value of pulse frequency *S*.

3. In the process of high speed pulse output, when the power flow driven by the instruction turns OFF, the output will stop without deceleration.

4. If the corresponding high speed pulse output monitor (SM82 or SM83) is ON, the power flow driven by the instruction will not be driven by the instruction again after the power flow turns OFF.

5. The direction is determined by the positive or negative nature of \boldsymbol{S} .

Note

1. Pay attention to the instruction driven time

2. The high speed I/O instructions, PLS instruction and locating instructions can use Y0 or Y1 to output high speed pulses. However, take care not to use more than one such instructions on Y0 or Y1 at one time.

6.17.9 DRVI: Relative Position Control Instruction

LAD:									Applic	able to		IVC2	2 IVC1		
V (25) / /-	V ani) (-1 01)nur (111) - V lan) (1 01)nur (111)										g bit	Zero, Carry, Borr			ow
IL: DRVI	(S1)	(S2) (I	D1)	(D2)					Progra	am step:	s	11			
Operand	Туре						Applica	able eler	nents						Offset addressing
S1	DINT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	D	SD	С		V		\checkmark
S2	DINT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	D	SD	С		V		\checkmark
D1	BOOL			Y											
D2	BOOL			Y	М	S									

Operand description

S1: output pulse number (relatively specified)

32-bit instruction: -999999 ~ +999999

S2: output pulse frequency (Hz)

32-bit instruction: 10 ~ 100000 (Hz)

D1: high speed pulse output starting address (Y0 or Y1)

D2: rotating direction signal output starting address. Its state is determined by **S1**:

- When **S1** is positive: **D2** is ON
- When S1 is negative: D2 is OFF

Function description

1. S1 is stored in the following current registers:

- Y0 output: SD80, SD81 (32-bit)
- Y1 output: SD82, SD83 (32-bit)

2. When **D2** is OFF, the value of the current value register will decrease.

3. The rotating direction is determined by the positive or negative nature of *S1*.

4. Changing the operands during the execution of the instruction will not take effect until the next cycle when the instruction is executed again.

5. During the execution of the instruction, the output will decelerate to stop when the driven contact turns OFF. The exection completion flag SM will not act then.

6. If the corresponding high speed pulse output control (SM80 or SM81) is ON, the contact driven by the instruction will not be driven by the instruction again after the contact turns OFF.

Note

1. Pay attention to the configuration of SD84 ~ SD87 when using this instruction

2. When the instruction input frequency is smaller than SD84, there will be no high speed output at Y0 or Y1. When the instruction input frequency is bigger than SD85 or SD86, the output will be abnormal.

6.17.10 DRVA: Control Absolute Position Instruction

LAD:									Applic	able to		IVC2	IVC1		
<mark>(392)</mark> ↓									Influenced flag bit			Zero, carry, borrow			
IL: DRVA	(S1)	(S2)	(D1)	(D2	2)				Progra	am step	S	11			
Operand	Type						Applic	able ele	ments						Offset
operana	Type						7 tppilo		mento						addressing
S1	DINT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	D	SD	С		V		\checkmark
S2	DINT	Constant	KnX	KnY	KnM	KnS	KnLM	KnSM	D	SD	С		V		\checkmark
D1	BOOL			Y											
D2	BOOL			Y	М	S									

Operand description

S1: targe position (absolutely specified)

32-bit instruction: -999999 ~ +999999

S2: output pulse frequency (Hz)

32-bit instruction: 10 ~ 100000 (Hz)

D1: high speed pulse output starting address (Y0 or

Y1). The PLC output must be transistor output

D2: rotating direction signal output starting address. Its state is determined by **S1**:

- When **S1** is positive: **D2** is ON
- When **S1** is negative: **D2** is OFF

Function description

1. **S1** is stored in the following registers:

- Y0 output: SD80, SD81 (32-bit)
- Y1 output: SD82, SD83 (32-bit)

2. When **D2** is OFF, the value of the current value register will decrease.

3. The rotating direction is determined by the positive or negative nature of **S1**.

6.17.11 ABS: Read Current Value Instruction

4. Changing the operands during the execution of the instruction will not take effect until the next cycle when the instruction is executed again.

5. During the execution of the instruction, the output will decelerate to stop when the driven contact turns OFF. The exection completion flag SM will not act then.

6. If the corresponding high speed pulse output control (SM80 or SM81) is ON, the contact driven by the instruction will not be driven by the instruction again after the contact turns OFF.

Note

1. Pay attention to the configuration of SD84 ~ SD87 when using this instruction

2. When the instruction input frequency is smaller than SD84, there will be no high speed output at Y0 or Y1. When the instruction input frequency is higher than SD85 or SD86, the output will be abnormal.

LAD:									Applic	able to		IVC2	IVC1		
(P4	→_[A	B (9 72)	(5)]-	- 4) (1	AB \$D 2)	<i>(S)</i>]		Influer	nced fla	g bit	Zero, c	carry, bo	orrov	N
IL: ABS	(S)	(D1)	(D2)						Progra	am step	s	8			
Operand	Operand Type Applicable elements										Offset addressing				
S	BOOL	Х	Y	М	S										
D1	BOOL		Y	М	S										
D2	DINT		KnY	KnM	KnS					D	SD	С			\checkmark

Operand description

S: the input point from servo.

The input points occupies three consecutive Xs (S, S + 1 and S + 2) or other bit elements.

D1: output points to servo.

The output points occupies three consecutive Ys (D1, D1 + 1 and D1 + 2) or other bit elements

D2: the current value (32-bit) read from servo.

The current value occupies two word elements: D2 (MSB) and D2 + 1 (LSB). Because the read current value must be written into SD80 or SD82 (32-bit signed interger), you can directly specify SD80 or SD82 as D2.

Function description

1. You should power on the PLC and servo amplifier at the same time, or power on the servo amplifier first, in order to make sure that the servo amplifier is ON before the PLC enters the RUN state.

2. The read current value **D2** can be stored in any word element, but the current value must be eventually stored in SD80 or SD82.

3. The power flow of the ABS instruction should be ON after the current value is read, otherwise the servo amplifier will turn OFF.

4. SM82 and SM83 are the output monitors of Y0 and Y1. The monitors will turn OFF after the output is complete.

5. When the power flow is valid and the servo is ON, the ABS instruction will send the transmission mode signal.

6. When the data transmission ready signal and the ABS request signal coincide with each other, the (32 + 6)bit data communication will start.

7. The data are tranmitted through the ABS 2-bit (bit0 & bit1) loop.

8. The system error code for ABS Data Read Timeout is 79; for ABS Data Read and Check Error, 80.

9. The wire connection for the I/O signals of the ABS instruction is as shown in the following figure.

Time sequence chart

Note

The ABS instruction supports the Mitsubishi MR \sim J2 and MR \sim J2S servo amplifiers and use its specialized data transmission protocol to read the current value of absolute position. The ABS instruction is a dedicated 32-bit instruction. For the servo amplifiers of other brands, reading the current value of absolute position requires communication or other designated methods. When the ABS instruction is executed, the related I/O points will be processed accordingly. Therefore, the ABS instruction is applicable only to Mitsubishi servo amplifiers.

6.17.12 Application Examples

Mechanical diagram

Refer to Figure 6-2, and see the following example of an absolute coordinate system based on a single screw rod.

System wiring diagram (0418)

Program example

The aimed functions of the program are:

- When the PLC enters the RUN state, read the absolute position data from the servo amplifier through the ABS instruction or through communication (note that in this case, the servo amplifier must be powered on with the PLC at least at the same time)
- SM85 is set after PLC enters the RUN state to set the output clearing function, and Y2 will output a clearing pulse whenever zero return occurs.
- Press the JOG+ button to jog forward.
- Press the JOG button to jog backward.
- When the workbench is away from the zero point farther than the proximity detection point, press the Zero Return button to make it return to the zero point.
- Press the STOP button and a running workbench will stop immediately.
- Use the Forward/Reverse Positioning control buttons to locate the workbench

Chapter 7 SFC Tutor

This chapter introduces the basic concepts and programming methods of Sequential Funct	tion Chart (SFC). In addition,
the points to note during the programming is also introduced.	
7.1 Introduction To SFC	
7.1.1 What Is SFC	
7.1.2 What Is SFC Of IVC Series PLC	
7.1.3 Basic Concepts Of SFC	
7.1.4 Programming Symbols And Their Usage	
7.1.5 SFC Program Structure	
7.1.6 Execution Of SFC Program	
7.2 Relationship Between SFC Program And LAD Program	
7.2.1 STL Instruction And Steps	
7.2.2 SET Instruction	
7.2.3 RET Instruction And SFC Program Section	
7.2.4 OUT Instruction And RST Instruction	
7.2.5 SFC Selection Branch, Parallel Branch And Merge	
7.3 How To Program With SFC	
7.4 Points To Note In SFC Programming	213
7.4.1 Common Programming Errors	

 7.4.2 Programming Tricks
 215

 7.5 Examples Of SFC Programming
 217

 7.5.1 Simple Sequential Structure
 217

 7.5.2 Selection Branch Structure
 219

 7.5.3 Parallel Branch Structure
 222

7.1 Introduction To SFC

7.1.1 What Is SFC

The Sequential Function Chart, or SFC, is a programming language developed and got popular in recent years. SFC can turn a PLC program into a structured flow chart. By using standard programming symbols and grammar compliant with IEC61131-3, the SFC can divide a complicated operation process into sequential procedures that are linked together with conditioned transfers, so as to realize sequence control.

The SFC edited programs are direct and sequential. Each procedure and transfer condition are relatively simple program sections, ideal for the sequential control application. These advantages explain why it is finding wider application.

7.1.2 What Is SFC Of IVC Series PLC

The SFC of IVC series PLC is a programming language used by Invt IVC series PLCs. Besides standard SFC functions, the SFC of IVC series PLC can provide multiple nested LAD program blocks.

The program edited with SFC of IVC series PLC can be converted into LAD or IL program.

The SFC of IVC series PLC can also support up to 20 independent procedures. The independent procedures can run independently, that is to say, the steps within different independent procedures are scanned and executed separately. However, jumping among independent procedures is enabled.

7.1.3 Basic Concepts Of SFC

The SFC has the following two basic concepts: step and transfer. Other concepts, like jump, branch and multiple independent procedures, all evolve from the two basic concepts.

Steps

1. Definition

A step is actually a program section, representing a work state or move in the sequence control process. Putting multiple steps together in a organic way can form a complete SFC program.

2. Execution of steps

In a SFC program, each step is represented by a fixed S element.

A step is valid when it is being executed. For a valid step, its corresponding S element is ON, and the PLC will scan and execute its instructions. While a step not being executed is invalid. For a invalid step, its corresponding S element is OFF, and the PLC will not scan and execute its instructions.

Transfer

The sequence control process is actually a series of step transfers. A PLC executing a certain step will, if certain logic conditions are met, leave the current step to enter and execute a new step. That transition is called the step transfer. The logic condition that triggers the transfer is called the transfer condition.

7.1.4 Programming Symbols And Their Usage

Programming Symbol

The IVC series PLC SFC programming language consists of the following programming symbols:

Symbol name	Symbol	Description
Initial step	S1*	A initial step of SFC, numbered as Sn. The "n" must not repeat. The execution of a SFC program must start with an initial step, whose S element range is S0 \sim S19
Normal step	S21*	A normal step, numbered as Sn. The "n" must not repeat. The S element range for the normal step is S20S991
Transfer	+	A transfer. It can be built-in with a transfer condition (a embedde LAD). You can compile the transfer condition so that the S element connected with this transfer will be set when the condition is met and enter the next step. The transfer must be used between steps.

Table 7-1 Programming symbols

Symbol name	Symbol	Description
Jump	🕇 so	A jump, used after the transfer. It can set the specified S element to ON when the transfer conditions are met. It is used to cycle or jump among steps
Reset		A reset, used after the transfer. It can set the specified S element to OFF when the transfer conditions are met. It is used to end the SFC program
Selection branch	*	Multiple independent transfer conditions, used after a step. When the transfer condition of one branch is met, the last step will end and the next step of the corresponding branch will start. After that, no other parallel branch will be selected
Selection merge	* *	A merge of selection branches. When the transfer condition of one branch is met, the last step will end and the next step will start
Parallel branch		Connected after a step, the parallel branches share the same transfer conditions. When the transfer conditions are met, the parallel branches are validated and executed at the same time
Parallel merge		A merge of parallel branches. The next step will start only after all the parallel steps are finished and the transfer conditions are met
Ladder chart block	LAD1*	The LAD block presents LAD instructions for operations besides the SFC flow, such as starting the initial step and other general operations

Usage Of Programming Symbols

- 1. The initial step can be used alone. If you connect it with other symbols, you must use it at the start of you SFC program, and use a transfer condition symbol after it.
- 2. However, you cannot connet the LAD step with other symbols.
- 3. You must connect an normal stepwith transfer condition symbols, for the ordinary steps cannot be used alone.
- 4. The reset and jump should both be preceded by a transfer and followed by nothing.
- 5. Neither the transfer nor the jump can exist alone in a program.

7.1.5 SFC Program Structure

The structure of a SFC program is classified into three types: simple sequential structure, selection branch structure and parallel structure. Besides, the jump structure is also a special form of the selection branch structure.

Simple sequential structure

Figure 7-1 shows a simple structured SFC program and its LAD counterpart.

Figure 7-1 A simple structured SFC program and its LAD counterpart

In a simple structured SFC program, when the step transfer conditions are met, the program will run from the current step to the next step in a linear flow. At the last step, when the transfer conditions are met, the SFC program section will either end or transfer to the initial step.

1. Ladder chart block

The ladder chart block is used to start SFC program section. To be specific, to set the S element of the initial step to ON. In the preceding figure, the program uses the power-on startup mode.

The ladder chart block can also be used as other general program sections besides the SFC program.

2. Initial step

As shown in Figure 7-1, the initial step is started by a ladder chart block. The range of S elements for initial-step is $0 \sim 19$.

3. Normal step

The normal step is the main component of the program. The range of S elements for normal-step is $20 \sim 991$ (for IVC2) or $20 \sim 1023$ (for IVC1).

4. Transfer or reset

The program shown in Figure 7-1 is ended with a jump, which leads the program to the initial step. This is a cyclic program.

However, the program can also be ended with a reset, which can reset the status of the last step, end a program, and wait for the next round of execution.

Selection branch structure

The selection branch structure is shown in the following figure, with LAD on the left and SFC on the right.

1. Selection branch

A branch step is validated when its corresponding transfer conditions are met. You must ensure that the transfer conditions of different branches are all exclusive, so as to make sure that each time only one branch will be selected. As shown in the preceding figure, steps S27 and S28 in row N12 of LAD program are transferred from conditions M20 and M21 respectively. The conditions M20 and M21 must not be met at the same time in order to ensure that S27 and S28 will not be selected at the same time.

2. Selection merge

The selection merge is the structure where all selection branches merge to the same step. The transfer conditions are set respectively. As shown in the preceding figure, the transfer condition in the branch of S27 is that time is up for T12, while that for the branch of S28 is that time is up for T13. However, the results are the same: step S29 starts.

Parallel branch structure

The parallel branch structure is shown in the following figure, with LAD on the left and SFC on the right.

1. Parallel branch

When the transfer conditions are met for the parallel branches, all branch steps will be validated at the same time. This enables the PLC to process multiple procedures at the same time, a quite usual sequential control process. As shown in the preceding figure, in program row N5, the steps S30 and S31 will be validated at the same time when condition M30 is met.

2. Parallel merge

The parallel merge is the structure where all parallel branches merge to the same step by invalidating all branch steps at the same time. As shown in the preceding figure, in program row N6, when the program is running both S30 and S31 at the same time, if condition M31 is met, the program will start S32 and end S30 & S31.

The sequential control behind the parallel merge structure is that no next step can be executed unless all the parallel steps are finished.

Jump structure

The applications of jumps include: to omit certain steps, to recycle by returning to the initial step or a normal step, and to jump to another independent procedure.

1. Omitting certain steps

In a procedure, when certain steps are unnecessary under certain conditions, the program can jump directly to the needed step and omit the unnecessary steps, as shown in the following figure, with LAD on and left and SFC on the right.

In the SFC program shown in the preceding figure, S21 is used as the jump, while step S20 is omitted. The jump is actually a selection branch.

While in the LAD counterpart, the second branch in row N0 is the jump instruction, which uses the OUT coil instead of the SET instruction in the transfer. When step S0 is valid, and if M1 is ON, the program will jump to step S21.

2. Recycling

In a procedure, when it is necessary to recycle a part or all of the steps under certain conditions, you can use the jump function. you can recycle a part of the steps if you jump to a previous normal step, or all the step if you jump to the initial step.

Shown in the following figure is a program that can realize the above two recycles, with LAD on the left and SFC on the right.

In the SFC, when step S22 is valid, the program may jump to step S21 to recycle S21 and S22, or jump to the initial step S0 to recycle all the steps. Which recycle will be selected is determined by a selection branch structure. While in the LAD, the two kinds of jumps are realized in row N3, where you can see the OUT coil.

3. Jumping to another independent procedure

The SFC of IVC series PLC supports multiple independent procedures and jumping among these procedures is allowed. You can set certain transfer conditions in an independent procedure for jumping to a random step (initial or normal) of another independent procedure.

Note

Jumping among multiple independent procedures complicates the program. Use it with prudence.

Shown in the following figure is a jump from one independent procedure to another, with LAD on the left and SFC on the right.

In the SFC, when the S0 in the first procedure is valid, the program can jump to step S23 in the second procedure under certain conditions; while in the second procedure, the program can also jump to step S20 in the first procedure under certain conditions.

As shown in the preceding figure, the jump is based on a selection branch structure. When the program jumps to another procedure, all the steps in the original procedure will become invalid. As the example shows, if the program jumps to step S23 in the second procedure from step S20 in the first procedure, step S20 and all the other steps in the first procedure will become invalid.

7.1.6 Execution Of SFC Program

The similarity between the execution of a SFC program and that of a LAD program is that they both carry out cyclic scanning from up to down and from left to right.

On the other hand, their difference lies in that in a SFC program, the steps' validity will change according to certain conditions, and only valid steps can be executed. While in a LAD main program, the whole program will be scanned and executed in each scan cycle.

As shown in the following figure, the program on the right is the LAD counterpart of the SFC program on the left. When step S20 is valid, the T2 timer will be scanned and start timing. Steps S21 and S22 will not be executed before T2 counter reaches the preset value, and S23 will not be executed when M13 is OFF.

The S elements state will switch between ON and OFF according to the transfer conditions, thus making the program transfer from one step to another. When a S element changes from ON to OFF, the output elements of the corresponding step will be cleared or reset. For details, see 5.3.1 STL: SFC State Load Instruction.

Note

1. The SFC program of IVC series PLC usually contains LAD program blocks that are used to handle operations besides the flow, including starting the SFC. The LAD program blocks are not controlled by the S elements and will be executed in every scan cycle.

2. Because the state change of the S element will affect the embedded instructions of the corresponding step, and the switch-over between two steps takes some time, it is necessary to observe certain rules during the SFC programming. For details, see 7.4 Points To Note In SFC Programming.

7.2 Relationship Between SFC Program And LAD Program

A SFC program can take the form of a LAD program, which can help understanding the SFC program structure. In the LAD program, the SFC symbols are replaced with various SFC instructions, while the procedures are represented by various structures.

7.2.1 STL Instruction And Steps

All SFC steps are represented by S elements. In a LAD program, a step is started by a STL instruction. Shown in the following left figure is the LAD program of a simple sequential structure, and the right figure is its corresponding SFC program.

As shown in the LAD program, the S2 step starts with a STL instruction, and the following TON instruction is the internal instruction of S2. A step can be made up of multiple instructions. A SFC step is actually a relatively complete program section, almost consistent with the LAD counterpart.

The difference between a initial step and an normal step is that they use different S elements.

For detailed information about the STL instruction, see *5.3.1 STL: SFC State Load Instruction*. Note that when the step changes from ON to OFF, the destination operands of its internal instructions will be cleared. Such instructions include OUT, TON, TOF, PWM, HCNT, PLSY, PLSR, DHSCS, SPD, DHSCI, DHSCR, DHSZ, DHST, DHSP and BOUT.

Note

Because the PLC runs in continuous scan cycles, after a step transition, the instructions of the original step will not be affected by the change of ON to OFF until the next scan cycle. See 7.4.1 Common Programming Errors.

7.2.2 SET Instruction

As shown in the preceding figure, the transfer symbols in the SFC program on the right are realized through the SET instructions in the LAD program on the left.

The transfer conditions consist of the NO contacts before the SET instruction. The NO contacts are controlled by internal instructions or through external operation.

When the power flow of the SET instruction is valid, the specified step becomes valid, and the current valid step is invalidated. A step transfer is thus complete.

7.2.3 RET Instruction And SFC Program Section

As shown in the preceding figure, the SFC program on the right starts with a S2 initial step symbol, and returns to S2 after two ordinary steps. While in the LAD program, the SFC program section must end with the RET instruction. The RET instruction can be only used in a main program.

7.2.4 OUT Instruction And RST Instruction

As shown in the preceding figure, the jump to S2 is realized in LAD program by the N3 row, which uses an OUT instruction. The destination operand of the OUT instruction (jump) can be in any independent procedure. If the reset S26 is used, line N3 in the LAD program will be a RST instruction, which can reset the last step S26.

7.2.5 SFC Selection Branch, Parallel Branch And Merge

See Selection branch structure in 7.1.5 SFC Program Structure for the LAD counterpart of SFC selection branches. See Parallel branch structure in 7.1.5 SFC Program Structure for the LAD counterpart of SFC parallel branches.

7.3 How To Program With SFC

1. Analyse the work flow and determine the program structure

The structure of a SFC program is classified into three types: simple sequential structure, selection branch structure and parallel branch structure. Besides, the jump structure is also a special form of the selection branch structure. To program with SFC, the first thing to do is to determine the structure of the flow. For example, a single object passing through a sequential flow is a simple sequential structure. Multiple objects with different parameters to be processed asynchronously needs a selection branch structure. While a cooperation of multiple independent mechanical elements may need a parallel branch structure.
2. Determine the major procedures and transfer conditions to draw a draft flow chart

After determining the strucuture, you need to figure out the major procedures and transfer conditions. By deviding the work flow into smaller operation stages, you can get the procedures. End each procedure with a transfer condition, and you can get the draft of the work flow.

3. Make a SFC program according to the draft flow chart

Use the SFC programming language in AutoStation to make a SFC program out of the draft flow chart. By now you have got an executable PLC program, but you still need to refine it.

4. Make a list of input and output points, and determine the objects of each procedure and the transfer conditions

Generally, the input points are transfer conditions, while the output points are the operation objects. In addition, with the list, you can further modify the SFC.

5. Input the steps and transfer conditions

In the SFC program you just made, right click a SFC symbol and select **<u>E</u>mbedded Ladder Chart** in the shortcut menu. You are then able to edit the step or transfer condition through the LAD programming language.

6. Add functional program sections to the program

Do remember to add program sections that provide general functions, such as start, stop and alarm functions. Such program sections should all be put in LAD blocks.

Note

The start and stop operations are crucial for personal and equipment safety. Considering the special features of SFC program, make sure that all outputs that should be stopped are shut down when the PLC is stopped.

7.4 Points To Note In SFC Programming

The STL instruction has some special characteristics, and the PLC scans instructions cyclically by their display order. Because of these reasons, there are some points to note during SFC programming.

7.4.1 Common Programming Errors

1. Reusing steps

In the same PLC program, each step corresponds to a unique S element and cannot be reused. Note this when editing a SFC program using the LAD editor.

2. Setting branches after a transfer condition

Setting conditioned branches after a transfer condition is prohibited in SFC programming, as shown in the left figure below. Instead, you should change it into the right figure below.

3. Connecting output coils to internal bus after a NC or NO contact instruction

Connecting output coils to the internal bus after a NO or NC contact instruction in a branch is prohibited, as shown in the left figure below. In stead, you should change it into the right figure below.

4. Reusing the same element in neighboring steps

The PLC scans instructions by their display order. The scanning of the current step and that of the next step are closely joined together.

Therefore, after a STL instruction is executed, although certain elements of the instruction will be reset (see 5.3.1 *STL: SFC State Load Instruction*), the reset will not be carried out until the next scan cycle. That means, at the moment of the transfer, the elements of the last step retains their states and values until the step is scanned in the next cycle. As shown in the following figure, the two neighboring steps use the same timer: T2. When the S0-S20 transfer occurs, the T2 will retain its value and state, rendering the step S20 unable to perform as it is designed. The program will jump directly to S21 and S22. Therefore, it should be noted that, although reusing elements in a program is not prohibited, you should avoid reusing them in neighboring steps, or accidents may occur.

5. Failing to inter-lock elements

During SFC programming, certain elements may become contradictary to each other under some special transfer conditions. Inter-locking is then necessary.

Take the following forward & backward operation program as an example, where Y0 and Y1 are respectively forward and backward output. X0 is forward operation, X1 is backward operation, and X2 the is stop button. Y0 and Y1 should be inter-locked, that is to say, they should not be ON at the same time.

However, in this example, when Y0 is ON, if X1 is ON and the S33 is validated, Y1 will be also ON, within the same scan cycle with Y0.

Therefore, you need to add an interlock to the program by adding a Y0 NC contact before the Y1 output coil, as shown in the following figure.

6. Confusing jumps with transfers

Jumps are used between different procedures or non-neighboring steps, while transfers are used between neighboring steps. It is prohibited to change an output coil into a SET instruction where a jump should be used, or change a output coil into a SET instruction where a transfer should be used.

7. Using parllel merge for selection branches

In a selection branch structure, only one selection is valid. However, when it is mixed with a parallel branch structure, the selection branch structure may never end. As shown in the following figure. In the left part, when flow 1 runs to step S41, it meets the transfer condition of a parallel merge. But the system will never run flow 2. Therefore the transfer will never occur, making flow 1 unable to end.

As shown in the right part, to correct it, you need to add a step S42 whose function is the same as S41. Then add an empty step S43 that serves as a structural block without actual function. Design the transfer conditions for S38, S41 and S43 according to the actual situation.

7.4.2 Programming Tricks

1. Making use of empty steps

You may need empty steps to deal with the branches with grammatical problems. The empty steps do not provide actual operation, but a necessary node in structure before the next transfer. See the following example. In the left figure below, the selection merge is connected immediately with another selection branch structure. That is prohibited. You can change it as the right figure shows: add an empty step.

In the left figure below, the selection merge is connected immediately with a parallel branch structure. That is prohibited too. You can also change it as the right figure shows: add an empty step.

You can address other tricky structures, such as parallel merge connected with parallel branches, or parallel branches connected with selection branches, by adding an empty step.

2. Merging branches and transfer conditions

Some seemingly complicated branches are the result of bad design. You can simplify them by merging some branches.

As shown below, the designer set a selection branch first, following it by two selection branches. However, simply four selection branches will achieve the same. The original two-level transfer conditions become one level transfer condition.

3. Making use of battery backup function

The S elements can be saved upon power failure by the battery. In this way the program can resume from the step when the power failure occurred.

7.5 Examples Of SFC Programming

The examples in this section are just illustrations of SFC programming, with simplified operations and conditions. The equipment configuration is conceptual and for study only. Do not apply the example programs to actual use.

7.5.1 Simple Sequential Structure

The following example is an object lifting and conveying machine. This machine uses cylinder lifting devices and rollers to convey the object tray from one conveying belt to another. The following figure is a top view of the machine.

After the machine is started, the object tray will be conveyed to the entrance of the machine at the left side and trigger the "Tray in" limit switch. If no other tray is occupying the machine, the "Baffle plate" will lower down to let the object tray enter the machine. When the tray is completely into the lift when it triggers the "In lift 1" limit switch, the lift will raise the tray until the "Height OK" limit switch is triggered. The rollers will then act to convey the tray to the lift on the right side until the "In lift 2" limit switch is triggered. The lift will then lower to put the tray to the conveying belt on the right. When the "Convey complete" limit switch is reset, a complete lift and convey process is over and the machine is ready for the next round.

SN	Address	Monitored object	SN	Address	Monitored object
1	X0	Tray in limit switch	8	Y0	Cylinder solenoid valve for the baffle plate
2	X1	In lift 1 limit switch	9	Y1	Cylinder solenoid valve for the left lift
3	X2	Height OK limit switch	10	Y2	Cylinder solenoid valve for the right lift
4	X3	In lift 2 limit switch	11	Y3	Roller motor contactor
5	X4	Convey complete	12	Y4	Motor contactor for the left conveying belt
6	X5	Start switch	13	Y5	Motor contactor for the right conveying belt
7	X6	Auxiliary signal of emergency switch			

The input and output points are listed in the following table.

This is a simple sequential flow. The procedures are linear, without any selection or parallel procedures. Writing the program with SFC would be faster and clearer than the conventional logic design method. See the following figure for the SFC program and its LAD counterpart.


```
Start & stop control program section?/
               Xe
I H
                    __(<sup>30</sup>)
10
81
               ITH
                    -[ RST
                             20
                                     J
              ICH 10
NZ
                             10
                                     1
            ÷
93
               111-
                    725 37
                             50
                                     3
                    E
                       58.7
                             24
                                     J
                    SET TS
                                     1
      IS
14
            f zest
164
                    20
                                     Ű,
                              6
      あい
               8.51
                    50
                            3
           4 ZB5T 930
                                     1
                             4
    SPT program martinn"/
                                     521
-1/1
                        $20
333
      683
               1.1
      810
(3)
16
           -f 700
                   72
                             5
                                     J
                        10
               II.
                      -C
                           Э
                       708
                             71
                                    10
                                          1
                            521
                                     J
                       52.7
     121
(3)
ň
              SET Y1
                            1
              SET 72
                            1
           ł.
                             74
                                    e ]
                       TON
                            821
                       SET
                                     I
                     -T
               1.1
     (8)
              3ET 73
201
                            3
            £
               4
                    527 523
                                     3
     _______
_< 8 >
89
               RST
                    \mathbf{Y}\mathbf{1}
                            ]
               RST
                    Y2
                            J
            ŀſ
               BST
                    \mathbf{Y3}
                            1
               TON
                    Τ3
                             2.0
                                  C
            ŀſ
                       .×4
+ i ⊢
NIO-[ RET ]
```

7.5.2 Selection Branch Structure

The following example is a material mixing flow. Through this flow, two kinds of products, namely A and B, are produced. See the following figure for the illustration of the manufacturing device.

To start the operation, the operator should select through the touch screen the product type, A or B, for the next batch of product. As the second step, the major ingredient wil be added until the added ingredient reaches 2000kg. As the third step, minor ingredient, A for type A product or B for type B product, will be added until the added minor ingredient reaches 500kg. As the forth step, the ingredients will be mixed round for 20 minutes. As the fifth step, the material will be evacuated until the left material is less than 20kg and the delay is over. Then the machine is ready for the next round.

If the machine is brand new, or the product type produced last time is different from what is going to be produced, you need to open the deionized water valve and evacuation valve to rinse the machine for 5 minutes before the operation. The input and output points are listed in the following table.

SN	Address	Monitored object	SN	Address	Monitored object
1	X0	Deionized water valve open	10	X11	Evacuation valve open
2	X1	Deionized water valve closed	11	X12	Evacuation valve closed
3	X2	Major ingredient valve open	12	Y0	Solenoid valve for deionized water
4	X3	Major ingredient valve closed	13	Y1	Solenoid valve for major ingredient
5	X4	Minor ingredient A valve open	14	Y2	Solenoid valve for minor ingredient A
6	X5	Minor ingredient A valve closed	15	Y3	Solenoid valve for minor ingredient B
7	X6	Minor ingredient B valve open	16	Y4	Solenoid valve for evacuation
8	X7	Minor ingredient B valve closed	17	Y5	Mixing motor contactor
9	X10	Mixing motor running			

Obviously this is a selection branch structured flow. You can select only one type of product , A or B, in a round. Meanwhile, the flow has a selection and jump structure: the rinsing procedure.

The following figures are the corresponding SFC program and its LAD counterpart.

/ *Remet: M1 - M3*/

315 -C 24 E 108 IS 3050] -11-_[527 521] /*Open the major ingredient valve to add major ingredient.*/ 321 Yi 86 2000 H - DO 0 H SET 822 J Dī 2000 H - D2 1 H SET 828] D0 (*Open inpredient & valve to add minor impredient &*/ 117 D0 2600 H SEE 824 1 (*Open ingredient B valve to add minor ingredient S*/ 828 Y9 C 2600 H BET 824] 4 = D2 /+Start the mimer.*/ /*Him for 20 minutes.*/ 524 ¥5 ≺8≻−−€ in: (TOH TI 12000) 4 525 525 /*Open the evanuation valve to evaruate finished product1/ /*When the left material is less than 200g and balf-minute has passed, enter the next step.*/ <525 Y4) 110 4 < D5 20 H T08 T3 300] __[527 526] ու յ D2 813 MOV NIGH RET]

7.5.3 Parallel Branch Structure

The next example is a bottle packager. The packager seals the bottles and sticks labels to them. Meanwhile, it will examine the bottle cap and label, so that the flawed products will be eliminated in the third procedure, while the qualified products will continue to the next work flow.

If no bottle is sent from the last work flow, the packager will not conduct any sealing or labelling. The three procedures are carried out at the same time, and each bottle moves from one position to another each time the rotary plate rotates. See the following figure for the illustration of the packager.

During the operation, the rotary plate rotates one step each time, which is detected by the X0 limit switch. The rotary plate will stay at each step long enough for all the three procedures, driven by cylinders, are finished. The cylinder rod OUT signal and cylinder rod BACK signal are monitored respectively.

SN	Address	Monitored object	SN	Address	Monitored object
1	X0	Rotary plate step limit switch	8	X10	Capping cylinder rod BACK
2	X1	Bottle in position detection switch	9	X11	Labelling cylinder rod BACK
3	X2	Cap in position detection switch	10	X12	Eliminatiing cylinder rod BACK
4	X3	Label detection switch	11	Y0	Rotary plate motor
5	X5	Eliminating cylinder rod OUT	12	Y1	Capping cylinder
6	X6	Labelling cylinder rod OUT	13	Y2	Labelling cylinder
7	X7	Capping cylinder rod OUT	14	Y3	Eliminating cylinder

The input and output points arel isted in the following table.

It is obvious that this is a parallel branch structured flow. With every step that the rotary plate makes, all the tree procedures are carried out at the same time. Then, when the three procedures are finished, the rotary plate will rotate one step again. See the following figure for the corresponding SFC program and its LAD counterpart.

In the program, M1 ~ M3 are the qualification flags for the procedures of capping, labeling and eliminating respectively. When the capping procedure runs to S22, X2 will check whether the capping is qualified or not. If yes, the corresponding qualification flag M1 will be set. When the labelling procedure runs to S25, X3 will check whether the labelling is qualified or not. If not, M2 will be reset. After all the procedures are complete, at step S29, the M2 state will be transferred to M3, and M1 state will be transferred to M2.

The capping procedure will act according to X1 state. If X1 indicates no bottle is in position, the capping will not proceed. The labelling procedure will act according to M2 state. If M2 is OFF, it indicates that the bottle in position is disqualified, and the labelling will not proceed. The eliminating procedure will act according to M3. The elimination will not be conducted when M3 is ON, which indicates that the bottle is qualified, or the elimination will be conducted otherwise. In both cases, M3 will be reset in S32 to prepare for the next procedure.

<5 - () Notary plat = motor x0 ______ h_____[SEX 520] plate in po [SET 523] L SEI SOG] //Capping*/ 525 <\$>-Bortle in p opitico X1 ×1 828 2 Bottle in p osition Cepping oyl Capping cyl inder rod _____ 1 <u>→___</u> 1 232 317 31 522 <3> Capping the Capping usa Capping rod /+Labeling+/ 523 <5> labeling gu H2 () labeling qu -<s>----C >> labeling ty linder labeling ro d out K3 525 _____ RST H2] <5> Labeling de Labeling que section alified labeling rò d back /*Elimination*/ ______[982 827] 306 <5> Elimination success Elimination success

Chapter 8 Using High Speed I/O

This chapter presents the usage and notes about the high speed counters, external pulse and PLS envelope.

8.1 High Speed Counter	227
8.1.1 Configuration	227
8.1.2 High Speed Counter And SM Auxiliary Relay Relationship	228
8.1.3 Usage Of High Speed Counter	228
8.1.4 Points To Note About High Speed Counters	230
8.2 External Pulse Capture Function	231
8.3 High Speed Pulse Output	231
8.3.1 High Speed Pulse Output Function	231
8.3.2 Points To Note About High Speed Pulse Output	231
8.4 Configuring PLS Envelope Instruction	232
8.5 Notes On High Speed I/O Application	234

8.1 High Speed Counter

8.1.1 Configuration

The built-in high speed counter for IVC series small PLCs are configured as follows:

	Input point	X0	X1	X2	Х3	X4	X5	X6	X7	Max, frequency (kHz)
Counter										······································
	Counter236	U/D*								50
	Counter237		U/D							50
1	Counter238			U/D						
phase	Counter 239				U/D					
& 1	Counter 240					U/D				
point	Counter 241						U/D			10
input	Counter 242	U/D		Reset						10
mode	Counter 243				U/D		Reset			
	Counter 244	U/D		Reset				Start		
	Counter 245				U/D		Reset		Start	
1	Counter 246	U	D							50
phase	Counter 247	U	D	Reset						
bi-dire	Counter 248			-	U	D	Reset			
ctional	Counter 249	U	D	Reset				Start		10
input	Counter 250				11	П	Pasat		Start	
mode	Counter 250				0	D	Reset		Start	
c	Counter 251	Ph A	Ph B							30
2 nhaso	Counter 252	Ph A	Ph B	Reset						
input	Counter 253				Ph A	Ph B	Reset			5
mode	Counter 254	Ph A	Ph B	Reset				Start		5
mode	Counter 255				Ph A	Ph B	Reset		Start	
Note:	Note:									
1. U:	1. U: UP									
2. D:	2. D: Down									

Table 8-1 High speed counter configuration

In the modes listed in the preceding table, the high speed counters will act according to certain input and handle high speed action according to interrupts. The counting practice is unrelated to the PLC scan cycle.

All the high speed counters are of the 32-bit bi-directional type. According to their different up/down switchover methods, they fall into the following three categories:

Item	1 phase I point input	1 phase bi-directional input	2-phase input
Counting direction control	Counters C236 ~ C245 are down counters when SM236 ~ SM245 are ON, and up counters when C236 ~ C245 are off	Counters C246 ~ C250 are either up counters or down counters, dependent on the input	Counter C251 ~ C255 acts according to the input. They count up when phase A is on and phase B changes from OFF to ON, and count down when phase A is ON and phase B changes from ON to OFF
Counting direction flag		SM246 ~ SM255 are the dire SM element OFF: counting u	ection flags of C246 ~ C255. up. SM element ON: counting down.

8.1.2 High Speed Counter And SM Auxiliary Relay Relationship

Special auxiliary relay for controlling counting direction

Туре	Counter SN	Up/Down control
	C236	SM236
	C237	SM237
	C238	SM238
	C239	SM239
1 phase 1 point	C240	SM240
input	C241	SM241
	C242	SM242
	C243	SM243
	C244	SM244
	C245	SM245

Special auxiliary relay for monitoring counting direction

Туре	Counter SN	Up/Down monitor
	C246	SM246
1 phase	C247	SM247
bi-directional	C248	SM248
input	C249	SM249
	C250	SM250
	C251	SM251
	C252	SM252
2 phase input	C253	SM253
	C254	SM254
	C255	SM255

8.1.3 Usage Of High Speed Counter

1 phase 1 point input high speed counter

The 1 phase 1 point input high speed counter starts to count only when the pulse input changes from OFF to ON, with the counting direction determined by its corresponding SM element.

Example:

The time sequence chart of the contacts action in the program is shown in the following figure:

1 phase bi-directional input high speed counter

The 1 phase bi-directional input high speed counter starts to count only when the pulse input changes from OFF to ON. The two input points determines its counting direction, which is monitored by its corresponding SM element. Example:

2 phase input high speed counter

The 2 phase input high speed counter starts to count only when the pulse input changes from OFF to ON. The phase difference of the two pulse inputs determines the counting direction, which is monitored by the corresponding SM element.

Example:

The time sequence chart of the contacts action in the program is shown in the following figure:

8.1.4 Points To Note About High Speed Counters

Classification of high speed counters

C236, C237, C246 and C251 can be used as both hardware counters and software counters, depending on the modes in which they are used. All the other high speed counters are software counters.

Maximum combined frequency

1. The maximum combined frequency, or the sum of frequencies of all signals input at any time, should not exceed 80kHz on the following two occasions:

- When multiple high speed counters (hardware counting mode) are used simultaneously.
- When the high speed counters (hardware counting mode) and the SPD instruction are used at the same time.

2. The maximum combined frequency when multiple software high speed counters, or when high speed counters and the SPD instruction, are used at the same time, is shown in the following table:

Scenario	Maximum combined frequency
Instructions DHSCS, DHSCR, DHSCI, DHSZ, DHSP and DHST are not used	80kHz
Instructions DHSCS, DHSCR, DHSCI, DHSP or DHST are used	30kHz
Instruction DHSZ is used	20kHz

Maximum frequency of hardware counter

Counters C236, C237, C246 and C251 are the only four potential hardware counters. Among which:

- C236, C237 and C246 are 1 phase counters. Their maximum counting frequency is 50kHz.
- C251 is a 2-phase counter. Its maximum counting frequency is 30kHz.

Maximum frequency of software counters

The high speed counters used in instructions DHSCS, DHSCR, DHSCI, DHSP or DHST are all in software counting mode. The maximum input frequency for the 1-phase counters is 10kHz; for 2-phase counters: 5kHz.

When used in the DHSZ instruction, the maximum frequency for the 1-phase counters is 5kHz; for 2-phase counters: 4kHz.

8.2 External Pulse Capture Function

The input points that provides the external pulse capture function are X0 ~ X7. The corresponding SM elements are listed below:

Input point	Corresponding SM element
X0	SM90
X1	SM91
X2	SM92
X3	SM93
X4	SM94
X5	SM95
X6	SM96
X7	SM97

Note

1. When the output input point changes from OFF to ON, the SM element of the corresponding terminal will be set to ON.

2. SM90 \sim SM97 will be cleared when the user program starts.

3. The total pulse frequency input through $X0 \sim X7$ should be smaller than 80kHz.

4. If high speed counters or SPD instructions are used on the same input point, the pulse capture function will become invalid after the first scan cycle, regardless of the validity of the instructions.

8.3 High Speed Pulse Output

8.3.1 High Speed Pulse Output Function

The high speed pulse output is the pulse controllable with instructions PLSY, PLSR, PLS and PWM, and output through Y0 or Y1. See *6.10 High-speed I/O Instruction* for the usage of such instructions. The pulse output is unrelated to the scan cycle.

Using two PLSY, PWM or PLSR instructions at the same time can output two independent high speed pulses at Y0 and Y1.

8.3.2 Points To Note About High Speed Pulse Output

During the execution of the high-speed instruction, so long as the power flow is not OFF, no other instructions can use the same port, unless the high speed pulse output instruction is invalid.

If multiple PWM, PLSY or PLSR instructions uses the same output point, the output point will be available only to the first valid instruction.

8.4 Configuring PLS Envelope Instruction

You can use the PTO instruction wizard to generate a PLS envelope instruction. In the AutoStation main interface, select **Tool** -> **Instruction Wizard** ... to open the dialogue box as shown in the following figure.

Select PTO, and click the Next button to enter the Output Wizard of Envelop, as shown in the following figure.

All the sections of the envelope have the same acceleration and deceleration. For example, according to the configuration shown in the preceding figure, the time it takes for the motor to accelerate from 20000Hz to 50000Hz is: $1000 \times (50000 - 20000) \div (100000 - 5000) = 316 \text{ (ms)} = 0.316 \text{ (s)}$

During the acceleration, the total pulse number can be figured out with the trapezoid area calculation method:

 $(20000+50000) \times 0.316 \div 2 = 11060$ (pulse number)

Therefore, if a certain accerleration/deceleration time or pulse number is required, you should do the math before setting the maximum speed, minimum speed and acc./dec. time.

Click the **Next Step** button in the preceding figure to enter the **Motion Outline Define** window as shown in the following figure.

Motion Outling Define		×
Data Step Specify the target speed and location and cli	id: "New Step" or "Update Step" (
current step: null Target Speed: 8000 (S000-100000) pulse) second reoving distance: 10 Pulse General reovement of all the steps:	Speed	
D Pulse	Position	
New Step Update Step	Delete Step < <last next="" step="">></last>	
OK.	Cancel	

Input the **Target Speed** and **moving distance** of the first step, and click the **New Step** button. Then input the **Target Speed** and **moving distance** again and click the **New Step** button again. Repeat this operation until no more steps are needed. Then you can click the **OK** button to enter the **Output Wizard of Envelop**, as shown in the following figure, where you can save the configuration into D elements.

Output Vixard of How	alap	×
	Aboute element for the configuration This envietop configuration needs 13 D elements, please input the initial D element number below. DS000 to D3012 Default Value	
	Previous Next Shep	, K

The wizard will generate two subprograms, one for setting the parameters, the other for executing the PLS instruction, as shown in the following figure. During the programming, do not call the execution subprogram before the parameter setting subprogram has been called and executed (to assigned values to D elements).

	The envelop weard will create two subprograms, please enter the name.
NZ	Enter the name of the generated subprogram
and a	The name of the parameter PLS_SET setting subgroomen is:
	The name of the subprogram PLS_EIE to be executed is:
	Note: The subprogram name cannot be the same with the name of the existing subprogram in the project.

After naming the subprograms, click the Next Step button to enter the window as shown in the following figure:

Click the Finish button to complete the PTO configuration.

8.5 Notes On High Speed I/O Application

The input points $X0 \sim X7$ can input signals for functions including high speed counter, SPD, pulse capture and external interrupt. However, such functions cannot be used at the same time, for the chances are that several functions could require the same input point(s). Therefore, during the PLC programming, only one of the several functions that an input point can provide is available. If $X0 \sim X7$ are repeatedly used in a user program, the program will not pass the compiling.

Among the functions of high speed counter, SPD, pulse capture and external interrupt, the function that $X0 \sim X7$ can provide respectively are listed in the following table.

Counter	Input point	X0	X1	X2	X3	X4	X5	X6	X7	Max. frequency (kHz)
	Counter236	U/D*								50
	Counter237		U/D							50
1	Counter238			U/D						
phase	Counter 239				U/D					
& 1	Counter 240					U/D				
point	Counter 241						U/D			10
input	Counter 242	U/D		Reset						10
mode	Counter 243				U/D		Reset			
	Counter 244	U/D		Reset				Start		
	Counter 245				U/D		Reset		Start	
1	Counter 246	U	D							50
phase	Counter 247	U	D	Reset						
bi-dire	Counter 248				U	D	Reset			
ctional	Counter 249	U	D	Reset				Start		10
input	Counter 250				U	D	Reset		Start	
mode					-	_				
2	Counter 251	Ph A	Ph B							30
phase	Counter 252	Ph A	Ph B	Reset						
bi-dire	Counter 253				Ph A	Ph B	Reset			5
ctional	Counter 254	Ph A	Ph B	Reset				Start		-
mode	Counter 255				Ph A	Ph B	Reset		Start	
SPD	instruction	Input	Input	Input	Input	Input	Input			10
		point	point	point	point	point	point			
Pulse ca	apture function	Input								
		point								
Externa (rising/	l interrupts SN /trailing edge)	0/10	1/11	2/12	3/13	4/14	5/15	6/16	7/17	
Note: U: UP;	D: Down									

Chapter 9 Using Interrupts

This chapter details the mechanism, processing procedures and usage of various interrupts.

9.1 Interrupt Program	236
9.2 Processing Interrupt Event	236
9.3 Timed Interrupt	237
9.4 External Interrupt	238
9.5 High-speed Counter Interrupt	
9.6 PTO Output Completion Interrupt	241
9.7 Power Failure Interrupt	242
9.8 Serial Port Interrupt	242

9.1 Interrupt Program

When an interrupt event occurs, the normal scan cycle will be interrupted and the interrupt program will be executed, which is called the interrupt mechanism. For the event-triggered control tasks that requires priority, you often need to use this special mechanism.

The system provides many kinds of programmable interrupt resources. Each kind of interrupt resource can trigger a type of interrupt events, and each type of interrupt event are independently numbered.

In order to deal with a certain interrupt event, you must compile a processing program, that is, an interrupt program, which is an independent POU in the user program.

An event number must be designated for each interrupt program in order to link the interrupt program with the interrupt event designated with the event SN. When responding to the interrupt request of the interrupt event, the system will call the corresponding interrupt program based on the interrupt event number.

Event	Interrupt event	Enabling	Event	Interrupt event	Enabling
number	interrupt event	SM number		r	SM
0	X0 input rising edge interrupt	SM40	20	High-speed counter interrupt 0	SM65
1	X1input rising edge interrupt	SM41	21	High-speed counter interrupt 1	SM65
2	X2 input rising edge interrupt	SM42	22	High-speed counter interrupt 2	SM65
3	X3 input rising edge interrupt	SM43	23	High-speed counter interrupt 3	SM65
4	X4 input rising edge interrupt	SM44	24	High-speed counter interrupt 4	SM65
5	X5 input rising edge interrupt	SM45	25	High-speed counter interrupt 5	SM65
6	X6 input rising edge interrupt	SM46	26	Timed interrupt 0	Setting: SD66 Enabling: SM66
7	X7 input rising edge interrupt	SM47	27	Timed interrupt 1	Setting: SD67 Enablin: SM67
10	X0 input falling edge interrupt	SM40	28	Timed interrupt 2	Setting: SD68 Enabling: SM68
11	X1 input falling edge interrupt	SM41	29	Power failure interrupt	SM56
12	X2 input falling edge interrupt	SM42	30	Character sending interrupt of communication port 0	SM48
13	X3 input falling edge interrupt	SM43	31	Character receiving interrupt of communication port 0	SM49
14	X4 input falling edge interrupt	SM44	32	Frame sending interrupt of communication port 0	SM50
15	X5 input falling edge interrupt	SM45	33	Frame receiving interrupt of communication port 0	SM51
16	X6 input falling edge interrupt	SM46	34	Character sending interrupt of communication port 1	SM52
17	X7 input falling edge interrupt	SM47	35	Character receiving interrupt of communication port 1	SM53
18	PTO (Y0) output completion interrupt	SM63	36	Frame sending interrupt of communication port 1	SM54
19	PTO (Y1) output completion interrupt	SM64	37	Frame receiving interrupt of communication port 1	SM55

The following are the interrupt resources provided by IVC series small PLC:

9.2 Processing Interrupt Event

1. When a certain interrupt event occurs, if it is enabled, its corresponding event number will be added to the interrupt request queue, which is 8-record long and FIFO.

2. Processing of the interrupt request by system:

1) If the system detects that any request in the interrupt queue, it will stop the normal execution of user program.

2) The system will read in the request queue the head record, which is the number of the first interrupt event. The interrupt program corresponding to the event number will be called and executed.

3) When the interrupt program is finished, the corresponding head record of the request queue will be deleted, and all the following records will take one step foward.

4) The system will repeat these procedures until the queue is empty.

5) When the interrupt request queue is null, the system will continue to execute the interrupted main program.

3. The system can handle only one interrupt request at one time. When the system is processing an interrupt request, a new interrupt event will be added to the interrupt request queue rather than being responded immediately. The system will process it after all the requests ahead of it in the queue are processed.

4. When there are 8 records in the interrupt request queue, the system will automatically mask the new interrupt event so that no new requests will be added to the queue. The mask will not be cancelled until all the requests in the queue are processed and the interrupted main program is executed.

Note

1. The interrupts should be brief, or abnormalities may occur, including the mask of other interrupt events (missing of interrupt requests), system scan overtime and low execution efficiency of main program.

2. It is prohibited to call other subprograms in the interrupt program.

3. If you want to refresh I/O immediately during the interrupt, use the REF instruction. Note that the execution time of REF is related to the number of the I/Os to be refreshed.

4. An interrupt event can generate an interrupt request only when the corresponding interrupt event is enabled (which requires setting the corresponding SM element ON), and the global interrupt enable flag shall be on.

5. When an interrupt request with no corresponding interrupt program in the user program is generated, the request will be responded to, but the response is empty.

9.3 Timed Interrupt

Description

The timed interrupt is the interrupt event generated by the system from time to time based on the user setting.

The timed interrupt program is applicable to the situation that requires timed and immediate processing by the system, such as the timed sampling of analogue signals, and timed updating analogue output according to certain waveform. You can set the intervals (unit: ms) for the timed interrupts by setting the corresponding SD elements. The system will generate the interrupt eventwhen the set time interval is reached (recommended minimum interval: > 4ms). The ON/OFF status of certain SM elements can enable/disable the corresponding timed interrupts.

The system provides 3 kinds of timed interrupt resources.

l able 9-1	l imed interrupt resource list	

Timed interrupt	Interrupt event number	Intervals of timed interrupt (SD)	Enable control (SM)
0	26	SD66	SM66
1	27	SD67	SM67
2	28	SD68	SM68

Note

1. Setting of enable control elements cannot affect the exection of the timed interrupts in the interrupt request queue.

2. The timing for a re-enabled interrupt will start from zero.

To change the interval of the timed interrupt when the program is running, it is recommended to follow the following procedures:

- 1. Disable the timed interrupt.
- 2. Change the interval.
- 3. Enable the time interrupt.

Example

This example uses timed interrupt 0 to flip the Y0 output once a second, which makes Y0 flashe.

1. Compile an interrupt program for the interrupt event.

2. Specify an interrupt event number for the interrupt program:

Project Manager Ø X	MAIN INT_1		1 ×
a 2-3-1 a Trogram block a BATS a S31_1	Variable addr. V	Program Dian Author	(\$1.3)
Control of the second sec	("Flap YD"/ YG /"Petrean W	Sntamupk timing interrupt (0(Interrupt no26)	61
Roject Man	880 	f or crost	

3. Set the interval for the timed interrupt and enable the timed interrupt in the main program.

Project Manager 0 ×	MAIN BINT.	1				10 8
∃ -0-1	Variable addr.	Variable Mane	Variable Type	Data Type	Consents	-
E Program block			TENP	3008		
			TENP	3008		*
TT DT 1	£		10			5
Construction	/*Set the in SHI /*Set SHSG (SHI /*Allow the SHO /*Allow the	-f rr]	i interrupt to 1 0 BD66 t timed interrup 6] oled interrupt (]] uc*/ to join the	7 Xequest queue	×, ×

9.4 External Interrupt

Description

The external interrupt is related to the actual PLC input points. It is classified into input rising edge interrupt and input falling edge interrupt. In the user program, add the actions related to external event to the external interrupt program. The highest response frequency of the system to the external event is 1K. The external events over 1K may be lost. The rising edge interrupt and falling edge interrupt cannot be used on the same port simultaneously. All the external interrupts are only valid when the global interrupt control EI and corresponding enabling SM are valid. The detailed relationship is as follows:

Interrupt number	Enabling element		Interrupt number	Enabling element
0 or 10	SM40		4 or 14	SM44
1 or 11	SM41		5 or 15	SM45
2 or 12	SM42		6 or 16	SM46
3 or 13	SM43]	7 or 17	SM47

Interrupt number	Interrupt source	Interrupt number	Interrupt source
0	X0 input rising edge interrupt	9	Reserved
1	X1 input rising edge interrupt	10	X0 input falling edge interrupt
2	X2 input rising edge interrupt	11	X1 input falling edge interrupt
3	X3 input rising edge interrupt	12	X2 input falling edge interrupt
4	X4 input rising edge interrupt	13	X3 input falling edge interrupt
5	X5 input rising edge interrupt	14	X4 input falling edge interrupt
6	X6 input rising edge interrupt	15	X5 input falling edge interrupt
7	X7 input rising edge interrupt	16	X6 input falling edge interrupt
8	Reserved	17	X7 input falling edge interrupt

The external interrupts are numbered as follows:

The single input impulse frequency of X0 - X7 is less than 200Hz.

Example

In the example, the system upsets the output of Y0 based on the corresponding external interrupt 0 function and rising edge input event of X0.

1. Compile the interrupt program to flip Y0 status once upon every interrupt and output immediately. To use an interrupt, you should select its corresponding interrupt number. See the following figure for the specific operation.

2. Write EI instruction in the main program, and set SM40, the interrupt enabling flag of X0 input rising edge interrupt, valid.

Project Manager 0 X	TEMAIN * TENT_1
B 9-4 Program block BATS SB_1	Variable addr. Variable Mame Variable Type Data Type Comments
 IST_1 Global variable table Bitablock Syntae block Front reference table Elesent sonitoring table IST_1 Coas equipsent connection Castignestics table of H5 	/*Set SH40 09 to enable the interrupt upon the XD tising edge*/
Noject Manager	/"Allow the request of enabled interrupt to join the request queue"/

9.5 High-speed Counter Interrupt

Description

The high-speed counter interrupt must be used together with the HCNT instruction or DHSCI instruction, and generates high-speed counter interrupt based on the value of the high-speed counter. You can compile programs related to external pulse input in the high-speed interrupt program. The high-speed counter interrupts (20 ~ 25) are valid only when the EI instruction and corresponding interrupt enable flag are valid.

Example

This example uses the high speed counter function of X0 to call the interrupt program (number 20) when the external counter C236 reaches the value specified through the DHSCI instruction.

1. Compile interrupt program, choose an interrupt number for each interrupt subprogram. See the following figure for the specific operation.

2. Write EI instruction in the main program, and set SM65, the interrupt enabling flag of high speed counter interrupt, valid. Drive the high-speed counter C236 and high-speed counter interrupt instruction.

Project Manager 🛛 🗶 🛪	MAIN MILL
8 8 25	Variable addr. Variable Nome Variable Type Data Type Comments
I ALIN	¢ 8
STR_1 Statist Sched wridie tals Sotte Black Sotte Statist Sotte Statistics Sotte Statistics Statistics Sotte Statistics Statistics Sotte Statistics Statistics Sotte Statistics Statistics Sotte Statistics Statistics Statistics South Statistics Statistic	<pre>/*Jet 37005 D0 to enable the interrupt upon 3D rising edge*/</pre>
6 Pomert Mar. D Petructure	/"Use C236 an the interrupt") b[DHSCI 1000 C236 20]

9.6 PTO Output Completion Interrupt

Description

The PTO output completion interrupt is triggered when enable flag (SM63 or SM64) is set and the high-speed pulse output at Y0 or Y1 is finished. You can carry out the relevant processing in the interrupt sub-program. This function is applicable only to IVC1 series PLC.

Example

This example uses the high-speed pulse output of Y0 to call the interrupt program (number 18) after Y0 high-speed pulse output is finished.

1. Code function in interrupt program (INT_1): Compile program for the interrupt code to realize the control. Choose the corresponding interrupt number for each interrupt. See INT_1 for the specific operation.

Project Manager . # . x	II MAIN II INT-	1*			111 ×
Contractions and a set of the set	Variable addr.	Variable Nome	Variable Type THUP	Data Type 2001	Connent
Sundar Sundar Jur-1 Gisial warials talls Jatallak Creat reference talls Marine Marine Const contaring talls Marine Configuration table.	/"Redout th	e high-speet-in -[JRC bit Program Table Program triamget Program description	terrupt complets j Auto D) Output complete in	e con times"/	

2. Code function in main program: Enable the global interrupt of the system and the enable flag SM63 of PTO output interrupt. Use PLS instruction.

9.7 Power Failure Interrupt

When the enable flag of SM56 is set and the main module has detected the power failure, the power failure interrupt will be triggered and the user can carry out the relevant processing in the interrupt sub-program. This function is applicable only to IVC1 series PLC.

As the power failure interrupt subprogram is executed when the system has no external power supply, the execution duration of power failure interrupt subprogram shall not be over 5ms. Otherwise, the power failure retention component cannot be completely saved.

9.8 Serial Port Interrupt

Description

Serial port interrupt: Under the free port protocol mode of serial port, the system will generate interrupt event based on the sending or receiving events of serial port.

For each serial port, the system supports 4 interrupt resources for the user. The interrupt program of serial port is mainly used when special processing is required for the receiving and sending of character/frame at the serial port and timely processing is requested. It is able to respond to the processing of completing character/frame XMT/RCV without being influenced by scanning time.

Set the ON/OFF status of SM component and the serial port interrupt can be enabled or disabled. When the serial port interrupt is disabled, the ones that have been added to the interrupt queue will continue to be executed.

Do not call the XMT instruction of serial port in the processing subprogram of character sending interrupt when the power flow is normally on. Otherwise, it may lead to interrupt subprogram nesting which blocks the execution of user program.

Interrupt of frame receiving and sending refers to the interrupt event that is delivered after the XMT and RCV instructions of the serial port are executed.

Serial port interrupt resource list:

Event number	Corresponding interrupt event	Interrupt enabling SM
30	Character sending interrupt of communication port 0	SM48
31	Character receiving interrupt of communication port 0	SM49
32	Frame sending interrupt of communication port 0	SM50
33	Frame receiving interrupt of communication port 0	SM51
34	Character sending interrupt of communication port 1	SM52
35	Character receiving interrupt of communication port 1	SM53
36	Frame sending interrupt of communication port 1	SM54
37	Frame receiving interrupt of communication port 1	SM55

Example

In the example, with the sending interrupt function of serial port frame, the system will flip Y3 output once when a frame is sent out and generate flashing effect based on the frequency of the character sending frame.

1. Compile interrupt program and the processing code when the serial port sending frame is completed and the interrupt is triggered.

2. Specify interrupt event number for the interrupt program:

3. Compile the code of the sending frame interrupt of enable serial port in the main program.

For the detailed example of serial port interrupt, please refer to Chapter 10 Using Communication Function.

Chapter 10 Using Communication Function

This chapter introduces the communication function of IVC series small PLC, including the communication resources and communication protocols, and uses examples to illustrate.

10.1 Communication Resource	245
10.2 Programming Port Protocol	245
10.3 Free Port Communication Protocol	245
10.3.1 Introduction	245
10.3.2 Parameter Setting of Free Port	245
10.3.3 Free Port Instruction	246
10.4 Modbus Communication Protocol	248
10.4.1 Introduction	248
10.4.2 Characteristics Of Links	248
10.4.3 RTU Transfer Mode	248
10.4.4 ASCII Transfer Mode	248
10.4.5 Supported Modbus Function Code	248
10.4.6 Addressing Mode Of PLC Element	249
10.4.7 Modbus Slave	249
10.4.8 Reading & Writing Elements	250
10.4.9 Handle Of Double Word	250
10.4.10 Handle Of LONG INT	251
10.4.11 Diagnostic Function Code	251
10.4.12 Error Code	251
10.4.13 Modbus Parameter Setting	252
10.4.14 Modbus Instruction	252
10.5 N:N bus Communication Protocol	255
10.5.1 Introduction	255
10.5.2 N:N bus Network Structure	256
10.5.3 N:N bus Refresh Mode	256
10.5.4 N:N bus Parameter Setting	261
10.5.5 Example	262

10.1 Communication Resource

The baud rates applicable to IVC series small PLC are listed in the following table:

Communication port	Supported baud rates for different protocols							
Communication port 0	115200, 57600, 38400, 19200, 9600, 4800, 2400, 1200							
Communication port 1	115200, 57600, 38400, 19200, 9600, 4800, 2400, 1200							

The communication protocols that IVC series small PLC supports are listed in the following table:

Basic module	Communication port	Port type	Supported protocol
	Port 0	PS-232	Programming port protocol, free port protocol, Modbus communication protocol(slave
IVC2	1 011 0	N3-232	station), N:N bus communication protocol(master station, slave station)
	Dort 1	RS-232 or	Free port protocol, Modbus communication protocol (master station, slave station),
	FOILT	RS-485	N:N bus communication protocol (master station, slave station)
	Port 0	DC 222	Programming port protocol, free port protocol, Modbus communication protocol
IVC1	FOILO	N3-232	(slave station), N:N bus communication protocol (master station, slave station)
	Port 1	RS-232 or	Free port protocol, Modbus communication protocol (master station, slave station)
	FUILI	RS-485	N:N bus communication protocol (master station, slave station)

You can also set the mode selection switch of IVC series PLC to TM to to transfer port 0 to programming port protocol.

10.2 Programming Port Protocol

The programming port protocol is an internal protocol dedicated to the communication between the host and the PLC.

10.3 Free Port Communication Protocol

10.3.1 Introduction

The free port protocol is a communication mode with user-defined data file format. It supports two data formats: ASCII and binary. The free port protocol realizes data communication through instructions and can only be used when PLC is in the RUN state.

The free port communication instructions include XMT (sending instruction) and RCV (receive instruction).

10.3.2 Parameter Setting of Free Port

Select **Communication Port** in the **System block** dialogue box, and select **Freeport protocol** in port 0 or port 1 setting area to enable the **Freeport setting** button as follows:

Special Madale Configuration	Frierite Level Of Internation
Saving Bange Output Table	Set Time Input Filter Input Pala
Advanced Settings	Companiesties Fort.
PLC communication part (0) setting	
Program part patrocol	
(1) Freepost protocol	Fiee pot setting
O Nodbus pistocni	Modeus setting
C EDaus Photocol	IChie setting
C Freeport protocol	Francisco continua:
Chierpolit protocol	Modern salary
C HUBBLE HIMBOS	CONVERSE OF STREET
CEDuo Plotocol	TENn reng

The parameter setting of free port is as follows:

enopost Ps	otocol			×
R C setal post	atting		Defe	uit Value
Baudraba	9600	Parity	Norm	*
Databit	в 😽	Stop bit	1	*
Valid byte	Low byte 👻			
Allow	start character detect	ian 0		*
Allow	and character detecti	on D		*
Interc	hanader timeout		÷ n	
💌 Interfe	name timeput	200		📫 IIS
	ОК		Cancel)

Configurable items are listed in the following table:

Item	Setting	Remark
Baud rate	38400,19200, 9600, 4800, 2400, 1200. Defaut: 9600	-
Data bit	7 or 8 (default)	-
Parity	None (default), odd, even	-
Stop bit	1 (default) or 2	-
Allow start character detection	Check to allow. Default: not allowed	-
Start character detection (setting)	0 to 255 (corresponding to 00 to FF)	Start receiving after the designated start character is detected. Save the received characters (including the start character) to the designated BFM
Allow end character detection	Check to allow. Default: not allowed	
End character detection (setting)	0 to 255 (corresponding to 00 to FF)	Stop receiving after the preset end character is received, and save the end character to the BFM
Intercharacter timeout (enabling)	Check to enable. Default: disabled	
Intercharacter timeout (setting)	0 to 65535ms	Stop receiving if the interval between two received characters is longer than the timeout setting
Interframe timeout (enabling)	Check to enabling. Default: disabled	When the power flow is valid and the communication conditions are met, that is, the timing for the receiving is started when the communication serial port has not been taken up, if the receiving of one frame has not been finished when the time is up, terminate the RCV.
Interframe timeout (setting)	0 to 65535 ms	When the RCV power flow is valid and the communication conditions are met, the timing will start as soon as the communication serial port starts to receive. If a frame is not received completely when the set time is up, the reception ends

10.3.3 Free Port Instruction

Points to note

The free port instructions XMT and RCV can be used to send/receive data to/from the designated communication port. For the usage of the free port instruction, refer to 6.12.11 XMT: Free-Port Sending (XMT) Instruction and 6.12.12 RCV: Free-Port Receiving (RCV) Instruction.

Note that to use free port instruction on a certain port, you need to set the free port protocol and communication parameter for the communication port through the system block of AutoStation. In addition, you need to download the system setting to the PLC and restart it.

Example

Example 1: Send a 5-byte data and then receive a 6-byte data through communication port 1.

The data to be sent:	01	FF	00	01	02	The data to be received:	01	FF	02	03	05	FE	
----------------------	----	----	----	----	----	--------------------------	----	----	----	----	----	----	--

Save the received data to D elements starting with D10. Each byte occupies one D element, as shown below:

01	FF	02	03	03 05 FE				
D10	D11	D12	D13	D13 D14 D15				
					1			
SM1 (MOV (MOV (MOV (MOV (MOV (MOV (MOV (MOV (MOV (SM122 (XMT SM122 (XMT SM123 (XMT SM123 (RST (XMT (MOV (RST (NOV (MOV (RST (XMT (XMT (XMT (XMT (XMT (NT (NT	16#1 D0 16#FF D1 16#0 D2 16#1 D3 16#2 D4 SM122] 1 D0 SM123] [RCV 1 SD125 2 SM120] GW101]]]]] 5] р10 б Ң INC р100	 Change the system block related param When the p to-be-sent da D0. Send dat (transmission Set SM12 receive data for the receiv. Set SM123 corresponding completion in S. Use X5 as and receiving 	e setting of communicato to free port communicato neters. power flow of SM1 is v ta to the communicatio a with XMT instruction complete flag bit) befor 22 after the transmis upon the rising edge. ed characters is 6. B after the data is receing g operation based on the formation register (SD the enable bit for inter p.	ation port in the sation and set the alid, save the on BFM starting with and reset SM122 ore the sending. ssion, and begin to The maximum length ved, and perform the the receiving 125). rupting the sending			
4 121	5m121]							

Example 2: Send and receive data through communication port 1.

SM1	Ъ	MOV	16#1	DO]			
	£	MOV	16#FF01	K4MO]			
	Ł	MOV	K2M0	D1]			
	Æ	MOV	K2M8	D2]			
	Æ	MOV	16#1	D3]			Different from "Example 1", when sending the high & low bytes of a word element, the element must be divided
	Ł	MOV	16#2	D4]			into high-& low-byte parts.
	Æ	RST	SM122]				can store its high byte and low byte separately in D3 and
	ł	XMT	1	DO	5]		D4, and then send D3 and D4. You can also store the data in a K4MX (such as K4M0 of in this example)
SM122	٦Ĺ	RST	SM123]				element. Take K2M0 as high byte and K2M8 as low
		†	[RCV	1	D10	6]	byte.
SM123		BLD	SD125	2	H INC	D100]	
×5 −−1 ⊢−	٦٢	RST	SM120]				
	կ	RST	SM121]				
•								

10.4 Modbus Communication Protocol

10.4.1 Introduction

For the serial port communication of IVC series small PLC, Modbus communication protocol is available. Two communication modes: ASCII and RTU (IVC1 only supports RTU mode) are supported. The PLC can be set as the master or slave station.

10.4.2 Characteristics Of Links

- 1. Physical layer: RS-232, RS-485
- 2. Link layer: asynchronous transfer mode
 - 1) Data bit: 7 bits (ASCII) or 8 bits (RTU)
 - 2) Transfer rate: 1200, 2400, 4800, 9600, 19200, 38400
 - 3) Check method: even check, odd check or no check
 - 4) Stop bit: 1 or 2 stop bits
- 3. Networking configuration: up to 31 sets of equipment. Address range: 1 to 31. Broadcast is supported.

10.4.3 RTU Transfer Mode

- 1. Hexadecimal data.
- 2. The interval between two characters shall not be less than the time of 1.5 characters.
- 3. There is no frame head or tail, and the interval between two frames is at least the time of 3.5 characters.
- 4. Use CRC16 check.
- 5. The maximum length of RTU frame is 256 bytes and the frame structure is as follows:

Structure of frame	Address	Function code	Data	CRC
Nubmer of Bytes	1	1	0 to 252	2

6. Calculation of interval among characters:

If the communication baud rate is 19200, the interval of 1.5 characters is $1/19200 \times 11 \times 1.5 \times 1000 = 0.86$ ms. The interval of 3.5 characters is $1/19200 \times 11 \times 3.5 \times 1000 = 2$ ms.

10.4.4 ASCII Transfer Mode

- 1. Use ASCII data communication.
- 2. The frame takes ": (3A)" as the head, and CRLF (0D 0A) as the tail.
- 3. The allowed interval among characters is 1s.
- 4. Use LRC check.

5. The frame of ASCII is longer than that of RTU. It is required two character codes for transferring one byte (HEX) in ASCII mode. The maximum length for data field (2×252) of ASCII is twice of RTU data field (252). The maximum length of ASCII frame is 513 characters and the structure of frame is as follows:

Structure of frame	head	Address	Function code	Data	LRC	Tail
Byte	1	2	2	0 to 2*252	2	2

10.4.5 Supported Modbus Function Code

Supported modbus function codes include 01, 02, 03, 05, 06, 08, 15 and 16.
10.4.6 Addressing Mode Of PLC Element

Function code	Name of function code	Modicon data address	Type of operational element	Remark
01	read coil status	0 ^{Note 1} :xxxx	Y, X, M, SM, S, T, C	Bit read
02	read discrete input status	1 Note 2:XXXX	Х	Bit read
03	read register status	4 Note 3:xxxx Note 4	D, SD, Z, T, C	Word read
05	write single coil status	0:xxxx	Y, M, SM, S, T, C	Word write
06	write single register status	4:xxxx	D, SD, Z, T, C	Word write
15	write multiple coils status	0:xxxx	Y, M, SM, S, T, C	Bit write
16	write multiple registers	4·xxxx		Word write
	status		-, -, -, -, -, -	

1. Relationship between read-write element function code and the element:

Note:

1.0 means "coil".

2. 1 means "discrete input".

3. 4 means "register".

4. xxxx means range "1 ~ 9999". Each type has an independent logic address range of 1 to 9999 (protocol address starts from 0). 5. 0, 1 and 4 do not have the physical meaning and are not involved in actual addressing.

6. Users shall not write X element with function codes 05 and 15; otherwise, the system will not feed back the error information if the written operand and data are correct, but the system will not perform any operation on the write instruction.

Element	Туре	Physical element	Protocol address	Supported function code	Notes
Y	Bit	Y0 ~ Y377	0000 ~ 0255	01. 05. 15	Output status, element
		(octal code) 256 points in total		- , , -	code: Y0 toY7, Y10 toY17
					Input status, it supports
x	Bit	X0 ~ X377	1200 to01455	01, 05, 15	two kinds of address, the
Λ	Dit	(octal code) 256 points in total	0000 to0255	02	element code is same as
					above
М	Bit	M0 ~ M1999	2000 ~ 3999	01, 05, 15	
SM	Bit	SM0 ~ SM255	4400 ~ 4655	01, 05, 15	
S	Bit	S0 ~ S991	6000 ~ 6991	01, 05, 15	
Т	Bit	T0 ~ T255	8000 ~ 8255	01, 05, 15	Status of T element
С	Bit	C0 ~ C255	9200 ~ 9455	01, 05, 15	Status of C element
D	Word	D0 ~ D7999	0000 ~ 7999	03, 06, 16	
SD	Word	SD0 ~ SD255	8000 ~ 8255	03, 06, 16	
Z	Word	Z0 ~ Z15	8500 ~ 8515	03, 06, 16	
Т	Word	T0 ~ T255	9000 ~ 9255	03, 06, 16	current value of T element
C	Word	C0 ~ C199	9500 ~ 9699	03 06 16	current value of C element
0	Word		0000 0000	00, 00, 10	(WORD)
С	Double	C200 ~ C255	9700 ~ 9811	03 16	current value of C element
9	word	0200 0200	0.00 0011	00, 10	(WORD)

Note:

The protocol address is the address used on data transfer and corresponds with the logic address of Modicon data. The protocol address starts from 0 and the logic address of Modicon data begins with 1, that is, protocol address + 1 = logic address of Modicon data. For example, if M0 protocol address is 2000, and its corresponding logic address of Modicon data will be 0:2001. In practice, the read and write of M0 is completed through the protocol address, e.g.: read M0 element frame (sent from the master station):

10.4.7 Modbus Slave

Modbus slave responds to the master station according to the received message of local address, rather than sending out message actively. The slave only supports Modbus function codes 01, 02, 03, 05, 06, 08, 15 and 16. The other codes are illegal function codes (except broadcast frame).

10.4.8 Reading & Writing Elements

All the function codes supported by IVC2, except 08 are used for read and write of the element. In principle, in one frame, there are 2000 bits and 125 words for reading, 1968 bits and 120 words for writing at most. However, the actual protocol addresses for elements of different types are different and discontinuous (e.g.: Y377's protocol address is 255, X0's protocol address is 1200). Therefore, when reading or writing an element, the element read for one time can only be the same type, and the maximum number of the read elements depends on the elements of this type that are actually defined. For example, when reading element Y (Y0 – Y377, 256 points in total), the protocol address ranges from 0 to 255, the corresponding logic address of Modicon data is from 1 to 256, and the maximum number of elements Y that can be read is 256.

The examples are as follows:

- 1. XMT from master station: 01 01 00 00 01 00 3D 9A
 - 01 address; 01- function code; 00 00 starting address; 01 00 number of elements to read; 3D 9A check Response of slave station: provide correct response
- 2. XMT from master station: 01 01 00 00 01 01 FC 5A

The starting address for the reading of master station is 0000. 01 01 (257) elements are read, which is beyond the defined number of elements Y.

Response of slave station: 01 81 03 00 51

The data from the slave station response is illegal, because 257>256, and 256 is the allowed maximum number of elements Y.

3. XMT from master station: 01 01 00 64 00 A0 7D AD

The starting address for the reading of master station: 0064 (decimal 100)

Number of elements read: 00 A0 (decimal 160)

Slave station response: 01 81 02 C1 91

The slave station responds with illegal data address, because there are only 156 elements Y starting with the protocol address 100, but 160>156, 160 is illegal.

4. XMT from master station: 01 04 00 02 00 0A D1 CD

The frame of XMT function code 04 of master station

Response of slave station: 01 84 01 82 C0

The slave station responds with illegal function code. 04 is not supported by IVC2.

Note

1. Element X does not support write operation (that is, the write of element X is invalid). For the writable properties of elements SM and SD, refer to *Appendix 1* Special Auxiliary Relay and Appendix 2 Special Data Register (if the element is un-writable, the write operation is invalid).

2. The address of the slave station is 01, the last two bytes are CRC check code and the second byte is function code.

10.4.9 Handle Of Double Word

The current count value of C element is word or double word. The value from C200 to C255 are double words, which are read and written through the function code (03, 16) of the register. Every two registers correspond to a C double word. Only the pair can be read and written from/into register upon reading or writing.

For example, read the RTU frame of three C double word elements from C200 to C202:

In the returned data, 9700 and 9701 are two addresses for the content of C200. 9700 is the high 16 bits and 9701 is the low 16 bits.

When reading the double word, if the starting address read is not even number, then the system will respond with error code of illegal address; if the read number of registers is not an even number, the system will respond with error code of illegal data.

For example:

XTM from master station: 01 03 25 E5 00 04 5E F2 The starting address for the reading of master station : 4 word elements of 25 E5 (decimal 9701,) Response of slave station: 01 83 02 C0 F1 Response of slave station: illegal data address XTM from slave station: 01 03 25 E4 00 05 CE F2 The starting address for master station read: 5 word elements of 25 E5 Response of slave station: 01 83 03 01 31 The data sent back from slave station is illegal.

10.4.10 Handle Of LONG INT

A LONG INT data can be saved in two D elements. For example, if a LONG INT data is saved in D3 and D4 of IVC series PLC, the high 16 bits will be stored in D3 and the low 16 bits will be stored in D4. This is also true when the master station reads LONG INT data through Modbus and reorganize the data into 32 bits. The storage principle for FLOAT is the same as the storage principle for LONG INT data.

10.4.11 Diagnostic Function Code

Diagnostic function code is used for test the communication between the master station and slave station, or the internal error of the slave station. The supported diagnostic sub-function codes are as follows:

Function code	Sub-function code	Name of sub-function code		Function code	Sub-function code	Name of sub-function code
08	00	Return query data	ſ	08	12	Return bus communication error count
08	01	Restart communication option		08	13	Return bus exceptional error count
08	04	Forced listen only mode		08	14	Return slave message count
08	10	Clear the counter		08	15	Return salve no response count
08	11	Return bus message count		08	18	Return bus character overrun count

10.4.12 Error Code

For the XMT of master station, the slave station returns data or statistic value in the data field under the normal response status. But in the abnormal response status, the server will return error code in the data field. Refer to the following table for error codes:

Error code	Meaning of error code
0x01	illegal function code
0x02	illegal register address
0x03	illegal data

In addition, if the slave station receives data under the following situations, no message will be returned:

1) Error in broadcast frame, e.g. data error, address error;

2) Characters overrun, e.g. RTU frame over 256 bytes;

3) Under RTU transfer mode, interval between two characters time out, which is the same as receiving error frame, and no message will be returned;

- 4) Listen-only mode of slave station;
- 5) The slave station received ASCII error frame, including frame tail error, character range error.

Note

Read station is equipped with compulsory element. What is read is the value run by the program, which may be inconsistent with the compulsory value.

10.4.13 Modbus Parameter Setting

Set communication port in system block

There are two serial ports (serial port 0 and 1) on the communication port interface. Communication port 0 only supports Modbus slave station, while communication port 1 supports both master and slave stations.

Set Modbus communication parameters

There is a button of default value on Modbus operand interface. The default value is the communication setting recommended by Modbus communication protocol. For the parameter setting items, refer to Table XX.

Item	Setting					
Station No.	0 to 31					
Baud rate	38400, 19200, 9600, 4800, 2400, 1200					
Data bit	set to 7 or 8 bits; 7 for ASCII mode, 8 for RTU mode					
Parity check bit	set to no check, odd check and even check					
Stop bit	set to 1 or 2; set to 1 for odd or even check; set to 2 for no check status					
Modbus master/slave	It can be set to master or slave station; communication port 1 can be set to master/slave station,					
	communiation port 0 can only be set to slave station					
transfer mode	Select RTU mode or ASCII mode					
main mode timeout	The time for waiting the slave response by master is over the set value.					
Note: After the operand is set and downloaded in the system block, it will be valid only after one operation.						

10.4.14 Modbus Instruction

When PLC is used as Modbus master station, the Modbus data frame can be sent/received through Modbus instruction provided by system. For the detailed use of Modbus instruction, refer to 6.12.1 *Modbus: Modbus Master Station Communication Instruction*.

If PLC is set to master station, there is a timeout item in main mode when setting Modbus parameter in the system block. To ensure the correctness of the received data, the timeout period shall be longer than a scan cycle of Modbus slave station and with reasonable margin. For example, if IVC2 is the slave station and a scan cycle of IVC2 is 300ms, the main mode timeout of the master station shall be over 300ms. It is proper to set the timeout to 350ms.

Application program

Example 1: When IVC2 PLC is Modbus master station as well as slave station, read bit status of No.5 station. The protocol address of slave station read by master station is the bit value ranging from 11 to 39. Assuming that the read data are as follows, the storage location for the received data starts from D100, save the address to D100, function code to D101 and number of registers in D102. Save the read bit value in the units beginning with D103.

C											Ũ	U			
42	41	40	39	38	37	36	35	34	33	32	31	30	29	28	27
Х	Х	Х	0	0	1	1	0	0	0	0	1	0	1	1	0
			D1	06							D1	05			
26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11
1	1	0	0	0	1	1	0	1	1	1	0	0	0	0	1
D104										D1	03				

If the read number of the registers is not the times of 8, add 0 to the high bits. In the above example, it has added 0 to 3 high bits (40, 41 and 42) in D106.

SM1	ſ	MOV	5	DO]				
	Ł	MOV	1	D1]				
	ł	MOV	0	D2]				
	£	MOV	11	D3]				1. Designate 5 as the address of the slave station to be accessed (save to D0).
	£	MOV	0	D4]				 Designate 1 as the function code (save to D1). The address of the register to be read is 11 (Save to D2/D3 according to high and low bytes).
	Ł	MOV	29	D5]				4. The number of registers to be read is 29 (Save to D4/D5 according to high bits and low bits).
	£	RST	SM135]					 5. The received data is saved to D100. 6. If the receive is completed (set SM135), add 1 to
	Ł	RST	SM136]					D200. 7. If the communication fails (set SM136), add 1 to
	L	SM124	—[MODBUS	1	DO	D10	0]	D201 and save the error code to D202. 8. SM124 is the idle flag of the communication port.
SM135	-[INC	D200]					
SM136	ſ	INC	D201]					
	կ	MOV	SD139	D202]				

Note

1. When logic address is used for addressing the bit element of IVC2 PLC, the logic address 1 is the protocol address 0. In the above example, reading the value of $11 \sim 39$ bits (protocol address) in the slave station, the logic address shall start from 12. 2. The failure of this communication will not affect the next communication, that is, if there are two Modbus XMT instructions in one user program, the first communication fails and has error code, it will not influence the data sending of the second Modbus instruction. Thus, in the example, we placed the error code of SD139 in D202, which can be observed through D202.

3. For the message sending of the slave station, if the master station is in listen-only mode, there will be no data to be returned and the system will display error flag. Therefore, when using Modbus of IVC2, if IVC2 is the master station, the user shall clearly know which PLC slave station is under listen-only mode, so as to ensure that the failure of the communication is not caused by the listen-only mode of the slave station.

Example 2: IVC2 is the Modbus master station, the slave station is also an IVC2 basic module. Read the status of bit elements (protocol address: 2000 ~ 2017) in No.5 station.

The read data are as follows:

- The received frame starts from D100.
- D100 is for saving address
- D101 is for saving function code
- D102 is for saving the number of registers
- Units beginning with D103 are for saving the read value of bit element

	٦Ĺ	MOV	5	DO]			
	ł	MOV	1	D1]			
	ł	MOV	16#7	D2]			1. The program has designated 5 as the address of the slave station to be accessed (save to D0).
	ł	MOV	16#0	D3]			2. The program has designated 1 as function code (save to D1).
	ł	MOV	0	D4]			3. The starting address of the register to be read is 07D0 (hexadecimal, save to D2/D3
	Ł	MOV	18	D5]			according to high bits and low bits). 4. The number of registers to be read is 18 (Save
	ł	RST	SM135]				to D4/D5 according to high bits and low bits). 5. The received data is saved to D100.
	Ł	RST	SM136]				6. If the receive is completed (set SM135), add 1 to D200.
		SM124 ──	—(МОДВИЗ	1	DO	D100]	7. If the communication fails (set SM136), add 1 to D201 and save the error code to D202.
SM135	-(INC	D200]				8. SM124 is the idle flag of the communication port.
SM136	٦Ĺ	INC	D201]				
	ե	MOV	SD139	D202]			

Example 3: IVC2 is the Modbus master station as well as the slave station. Read the status of the bit element with the protocol address ranging from 40 to 43 of No.5 station.

The read data are as follows:

The received frame starts from D100.

D100 is for saving address

D101 is for saving function code

D102 is for saving the number of registers

Units beginning with D103 are for saving the read value of bit element

40 e	lement	40 elei	ment	41 element	41 element	42 eleme	ent	42 element	43 element	43 element		
hig	h bits	low b	oits	high bits	low bits	high bi	ts	low bits	high bits	LSB		
D	103	D10)4	D105	D106	D107		D108	D109	D110		
	·		•									
	5M1 I I I I [MOV	5	DO]							
	f	MOV	3	D1]							
	£	MOV	0	D2]		1.	 The program has designated 5 as the address the slave station to be accessed (save to D0). The program has designated 3 as function of (save to D1). The starting address of the register to be read is (save to D2/D3 according to high bits and low bits The number of registers to be read is 4 (Sav D4/D5 according to high bits and low bits). The received data is saved to D100. If the receiving is completed (set SM135) add 				
	£	MOV	40	D3]		the 2.					
	£	MOV	0	D4]		(sa 3. ⊺					
	£	MOV	4	D5]		(sa 4.					
	£	RST	SM135]			5. 1					
	Æ	RST	SM136]			D2 7.	 D200. 7 If the communication fails (set SM136) 				
	L	SM124	[MOD3	BUS 1	DO :	D100]	D2 8. 9	01 and save the e SM124 is the idle	error code to D202	2. unication port.		
SI	₩135 	INC	D200]					-	·		
SI	M136 	INC	D201]								
	ł	MOV	SD139	D202]							

10.5 N:N bus Communication Protocol

10.5.1 Introduction

N:N bus is a small PLC network developed by Invt Auto-Control Technology Co., Ltd. The physical layer of N:N bus uses RS-485, so the PLC can be directly connected through communication port 1 or connected through communication port 0 by RS-232/RS-485 converter. The connected PLC of N:N bus can automatically exchange the values between D elements and M elements , which makes the access to the other PLC elements on the network as convenient as accessing its own element. In N:N bus, the data access between PLCs is completely equivalent (N:N communication network).

It is convenient to configure N:N bus. Most parameters of N:N bus only need to be configured on No.0 PLC. In addition, N:N bus supports online modification of the network parameters, and is able to detect the newly added PLC automatically. If any PLC is disconnected from the network, the other PLCs will continue to exchange the data. It is also able to monitor the communication status of the whole network through the relevant SM element of any PLC in N:N bus.

10.5.2 N:N bus Network Structure

N:N bus supports two kinds of network: single-layer network and multiple-layer network (as shown in the following figures):

Figure 10-1 N:N bus single-layer network

Figure 10-2 N:N bus multiple-layer network

In the single-layer network, each PLC only connects to N:N bus through 1 communication port. In the multiple-layer network, the layer-to-layer PLC (intermediate node) shall be connected, and the two communication ports of PLC shall be connected to different layers. The single-layer network can support up to 32 PLCs, while each layer of multiple-layer network can support 16 PLCs at most.

10.5.3 N:N bus Refresh Mode

The PLCs connected to N:N bus can automatically realize the exchange between parts of D elements and M elements in the network. The quantity and numbering of elements D and M are fixed, and the elements are called "Elements Sharing Area". If PLC uses N:N bus, the value of the Elements Sharing Area will keep refreshing automatically, so as to keep the value consistency of the Elements Sharing Area for each PLC in the network.

0# PLC	1# PLC	2#PLC	7# PLC	
0#SND area (W)	0#RCV area (R)	0# RCV area (R)	0#RCV area (R)	
1#RCV area (R)	1#SND area (W)	1# RCV area (R)	1#RCV area (R)	
2#RCV area (R)	2#RCV area (R)	2#SND area (W)	^{2#} RCV area (R)	
3#RCV area (R)	3#RCV area (R)	3#RCV area (R)	^{3#} RCV area (R)	
4#RCV area (R)	4#RCV area (R)	4#RCV area (R)	4# RCV area (R)	
5#RCV area (R)	5#RCV area (R)	5#RCV area (R)	5# RCV area (R)	Note:
6#RCV area (R)	6#RCV area (R)	6#RCV area (R)	6# RCV area (R)	SND area: sending area
7#RCV area (R)	7#RCV area (R)	7#RCV area (R)	7#SND area (W)	RCV area: receiving area
				R: read

As shown in the above figure, each PLC with N:N bus connected has a writable sending area in the Elements Sharing Area. N:N bus will automatically send the information (values of designated elements D and M) of the writable sending area to other PLCs, receive the information from other PLCs and save it to the read-only sending area. The element number in the Elements Sharing Area is fixed (64 D elements and 512 M elements can be shared) and these elements are distributed to more than one PLC. Therefore, the less PLCs are connected to the network, the more elements can be distributed to each PLC. The relationship is defined by N:N bus refresh mode:

Distribution of D element	Mode 1	Mode 2	Mode 3	Mode 4	Mode 5
in sending area					
D7700 to D7701	#0	#0			
D7702 to D7703	#1		#0		
D7704 to D7705	#2	#1	#0		
D7706 to D7707	#3	<i>#</i> 1		#0	
D7708 to D7709	#4	#2		- #0	
D7710 to D7711	#5	π2	#1		
D7712 to D7713	#6	#2	#1		
D7714 to D7715	#7	#3			#0
D7716 to D7717	#8	#4			#0
D7718 to D7719	#9	#4	#0		
D7720 to D7721	#10	#5	#2		
D7722 to D7723	#11	#5		#1	
D7724 to D7725	#12	#6	- #3	#1	
D7726 to D7727	#13	#0			
D7728 to D7729	#14	#7			
D7730 to D7731	#15	#1			
D7732 to D7733	#16	#0	#0		
D7734 to D7735	#17	#0	#4	- #2	
D7736 to D7737	#18	#0	#4		
D7738 to D7739	#19	#9			
D7740 to D7741	#20	#10			
D7742 to D7743	#21	#10	#6		
D7744 to D7745	#22	#4.4	#5		
D7746 to D7747	#23	#11			#4
D7748 to D7749	#24	#10			- #1
D7750 to D7751	#25	#12	# O		
D7752 to D7753	#26	#40	#0		
D7754 to D7755	#27	#13		#2	
D7756 to D7757	#28	#4.4		- #3	
D7758 to D7759	#29	#14			
D7760 to D7761	#30	#45	#/		
D7762 to D7763	#31	#15			

Distribution of D element on N:N bus single-layer network:

Explanation:

1) In mode 1, the D elements distributed to the sending area by 0# station are D7700 and D7701. D7700 and D7701 can be written by the PLC of 0# station, and directly read by other stations (1#--31#).

2) In mode 2, the D elements distributed to the sending area by 0# station are D7700, D7701, D7701 and D7703. The elements can be written by the PLC of 0# station and directly read by other stations (1#--15#).

Distribution of M element	Mode 1	Mode 2	Mode 3	Mode 4	Mode 5	
M1400 to M1415	#0					
M1416 to M1413	#0	#0				
M1422 to M1447	#1		#0			
M1442 to M1447	#2	#1				
M1446 LO M1463	#3			#0		
M1464 to M1479	#4	#2				
M1480 to M1495	#5		#1		#0	
M1496 to M1511	#6	#3				
M1512 to M1527	#7					
M1528 to M1543	#8	#4				
M1544 to M1559	#9		#2			
M1560 to M1575	#10	#5				
M1576 to M1591	#11	<i>"</i> 0			#1	
M1592 to M1607	#12	#6		<i>π</i> (
M1608 to M1623	#13	#0	#2		#0	
M1624 to M1639	#14	#7	- #5		#0	
M1640 to M1655	#15	#/				
M1656 to M1671	#16	#0				
M1672 to M1687	#17	#0	#4			
M1688 to M1703	#18	#0	#4			
M1704 to M1719	#19	#9		#2		
M1720 to M1735	#20	#10				
M1736 to M1751	#21	- #10	<i>ш</i> г			
M1752 to M1767	#22	#4.4	- #S			
M1768 to M1783	#23	#11			#1	
M1784 to M1799	#24	#10			#1	
M1800 to M1815	#25	#12	#6			
M1816 to M1831	#26	#12	#0			
M1832 to M1847	#27	#13				
M1848 to M1863	#28	#4.4		#3		
M1864 to M1879	#29	#14	77			
M1880 to M1895	#30	#45	#/			
M1896 to M1911	#31	#15				

Distribution of M element on N:N bus single-layer network:

Explanation:

1) In mode 1, the M elements distributed to the sending area by 0# station range from M1400 to M1415. The elements can be written by the PLC of 0# station and directly read by other stations (1#--31#).

2) In mode 2, the M elements distributed to the sending area by 0# station range from M1400 to M1431. The elements can be written by the PLC of 0# station and directly read by other stations (1#--31#).

Distribution of D element in sending area	Mode 6	Mode 7	Mode 8	Mode 9	
D7700 to D7701	#0	#0			
D7702 to D7703	#1	#0	#0		
D7704 to D7705	#2	#1	- #0	#0	
D7706 to D7707	#3	- #1		#0	
D7708 to D7709	#4	#2		#0	
D7710 to D7711	#5		- #1		
D7712 to D7713	#6	#2			
D7714 to D7715	#7	- #3			
D7716 to D7717	#8	#4			
D7718 to D7719	#9	- #4	#2		
D7720 to D7721	#10	#5	#2		
D7722 to D7723	#11	- #5		#1	
D7724 to D7725	#12	#6		#1	
D7726 to D7727	#13	#0	#2		
D7728 to D7729	#14	#7	- #3		
D7730 to D7731	#15				

Distribution of D element on N:N bus multiple-layer network (layer 0):

Explanation:

In mode 6, D7700 and D7701 are distributed to the sending area by 0# station (layer 0). They can be written by the PLC of 0# station and directly read by the other stations (1#--15#).

Distribution of D	element on N:N	l bus multiple-l	ayer network	(layer 1):
Distribution of D			ayor nothons	

Distribution of D element in sending area	Mode 10	Mode 11	Mode 12	Mode 13	
D7732 to D7733	#0	#0			
D7734 to D7735	#1	#0	#0		
D7736 to D7737	#2	#1	#0		
D7738 to D7739	#3	- #1		#0	
D7740 to D7741	#4	#2		#0	
D7742 to D7743	#5	#2	#1	#1	
D7744 to D7745	#6	#3			
D7746 to D7747	#7	#5			
D7748 to D7749	#8	#1			
D7750 to D7751	#9		#2		
D7752 to D7753	#10	#5	#2		
D7754 to D7755	#11	#5		#1	
D7756 to D7757	#12	#6		#1	
D7758 to D7759	#13	#0	#3		
D7760 to D7761	#14	#7			
D7762 to D7763	#15	#15 #7			

Explanation:

In mode 10, D7732 and D7733 are distributed to the sending area by 0# station (layer 0). They can be written by the PLC of 0# station and directly read by the other stations (1#--15#).

Distribution of M element on N:N bus	multiple-layer network (layer 0):
--------------------------------------	-----------------------------------

Distribution of M element in sending area	Mode 6	Mode 7	Mode 8	Mode 9
M1400 to M1415	#0	#0		
M1416 to M1431	#1	#0	#0	
M1432 to M1447	#2	#1	#0	
M1448 to M1463	#3	#1		#0
M1464 to M1479	#4	#2	- #1	#0
M1480 to M1495	#5	#2		
M1496 to M1511	#6	#3		
M1512 to M1527	#7	#5		
M1528 to M1543	#8	#4		
M1544 to M1559	#9	#**	#2	
M1560 to M1575	#10	#5	#2	
M1576 to M1591	#11	#5		#1
M1592 to M1607	#12	#6	#3	#1
M1608 to M1623	#13	#0		
M1624 to M1639	#14	#7		
M1640 to M1655	#15	π ⁺ 1		

Explanation:

In mode 6, the M elements distributed to the sending area by 0# station (layer 0) range from M1400 to M1415. The elements can be written by the PLC of 0# station and directly read by other stations (1#--15#).

Distribution of M	element on N:N	bus multiple-la	ver network	(laver 1):

Distribution of M element in sending area	Mode 10	Mode 11	Mode 12	Mode 13
M1656 to M1671	#0	#0		
M1672 to M1687	#1			
M1688 to M1703	#2	#1	#0	
M1704 to M1719	#3		- #1	#0
M1720 to M1735	#4	#2		#0
M1736 to M1751	#5	#2		
M1752 to M1767	#6	#2		
M1768 to M1783	#7	- #5		
M1784 to M1799	#8	#4		
M1800 to M1815	#9		#1 #2	
M1816 to M1831	#10	#5	#2	
M1832 to M1847	#11	- #5		#1
M1848 to M1863	#12	#6		#1
M1864 to M1879	#13	- #0	#3	
M1880 to M1895	#14	#7		
M1896 to M1911	#15			

Explanation:

In mode 10, the M elements distributed to the sending area by 0# station (layer 1) range from M1656 to M1671. The elements can be written by the PLC of 0# station and directly read by other stations (1#--15#).

Note:

Once PLC is configured with N:N bus communication protocol, D7700 ~ D7763 and M1400 ~ M1911 will become the public resource for data exchange on the network. Please pay attention to these elements when using them in the program!

10.5.4 N:N bus Parameter Setting

Select **Communication Port** in the **System block** dialogue box, and select **N:N bus protocol** in the port 0 or port 1 setting area to enable the **N:N bus setting** button as follows:

Set Time Input Filter Input Fela Communication Fort
Fiee pot setting
Madaa seteg
El'han selling
Francisco continue
Four put softing:
midan ming
TORE READ

Click the N:N bus setting button to enter the N:N bus protocol setting dialogue box as shown below:

				Dafa	rult Value	
CC senar port	secong	100		1.0.0	2.61	
Beatrate	38400		Parity check	C/m		1
Data bit	(0)		Stop bit	1		
Stationing			a			
Moximumber	of sites		Ð		\$	
Additional d	elay time		D		12	-
Rebry terms			3		4	
Hode	 Single laye Double lay Double lay Double lay 	r er(loyer) wr(loywr	0) Refresh	node ja	×	i

As shown in the preceding figure, the N:N bus parameters are set through the system block. The **Station no.** shall begin with 0#. Several PLCs cannot share the same station number. 0# station is used for starting and setting the whole network. The setting of **Max number of sites**, **Additional delay time**, **Retry times** and **Mode** can be realized through 0# station. For the stations with other station numbers, except that the **Baud rate** and **Parity check** shall be consistent with those of 0# station, they only need to set their own **Station no.**, as shown in the following figure:

ar Proto	cel			
			Defa	uit Valus
flaud rate	38400		Party deck Even	
Databit	10.0	111	Skap bit	
Station no.			10	
No: number	of sites		1	0
Additional de	day time		1	ns
Ratey Groen			1	
Mode	 Single Rover Comble Rover Translate Rover 	- Gerry Herer	0 Refresh node =	
	OK	a	Cancel	1

The **Max number of sites** refers to the total number of PLCs used in the network. If 6 PLCs are used in total, the value shall be set to 6 and the station number of the 6 PLCs ranges from 0 to 5. If you want to add another two PLCs to the network later without any interruption of the network, you can set the **Max number of sites** to 8. The numbers of the newly added PLCs are 6# and 7#. When 6# and 7# are connected to the network, they will be automatically detected by N:N bus within one second and included into the data exchange with 0#-5#.

10.5.5 Example

There are 5 PLCs in total and the station numbers range from 0 # to 4 #. Select 3 for the refresh mode. If you want to save the sum of D100 in 0 # PLC and D305 in 2 # PLC to the D500 of 4 # PLC, you can program as follows:

Programming 0#: MOV D100 D7700

Programming 2#: MOV D305 D7716

Programming 4#: ADD D7700 D7716 D500

Explanation: The example shows the N:N bus single-layer network. There are 5 PLC stations on the network and the refresh mode is set to 3. Each station can be distributed with 8 D elements and 64 M elements. The D elements distributed to 0# station range from D7700 to D7707, the ones to 2# station range from D7716 to D7723 and the ones to 4# station range from D7732 to D7739. Save the D100 value of 0# station to the public area D7700 distributed by the network, D305 value of 2# station to the public area D7716 distributed by the network. Execute sum operation of D7700 and D7716 in 4#PLC and save the sum to the local element D500.

Appendix 1 Special Auxiliary Relay

All the special auxiliary relays are initialized when the PLC changes from STOP to RUN. Those that have been set in system setting will be set to the preset value after that initialization.

Note

The reserved SD and SM elements are not listed in the table. The reserved SM elements are by default read only (R).

1. PLC Work State Flag

Addr.	Name	Action and function	R/W	IVC2	IVC1
SM0	Monitoring run bit	This bit is high in the RUN state, and low in the STOP state	R	V	V
SM1	Initial run pulse bit	This bit is set high when PLC changes form STOP to RUN, and set low after a	R	1	
OWIT		scan cycle		•	•
SM2	Power on flag bit	This bit is set high after system power-on, and set low after a scan cycle	R	\checkmark	\checkmark
SM3	System error	This bit is set when system error occurs after power-on or after PLC changes from	R		
ONIO	oyotem enor	STOP to RUN, or reset if no system error occurs			•
SM4	Battery voltage	This bit is set when the battery voltage is too low, or reset if the battery voltage is	R	N	
	low	detected higher than 2.4V			
SM5	AC power failure	This bit is set when PLC detects AC power off (detecting time 40ms). If the power	R √		N
01010	detection bit	is on after the delay of power off detecting time (set in SD05), the bit will be reset			v
SM6	24Vdc power	This bit is set when PLC detects the 24Vdc power failure (detecting time 50ms). If	P	2	N
01010	failure	within the following 50ms the power is detected to be back, this bit will be reset			v
	No battery work	If this bit is set as 1 (configurable only through system block), the Battery-backed			
SM7	mode	data lost error (code: 43) and the Forced-table lost error (code: 44) will not be	R	\checkmark	
	mode	reported upon system battery failure			
SM8	Constant scan	Set this bit, and the scan time will be constant (configurable only through system	P	2	N
01010	mode	block)			v
SMQ	Input point startup	Set this bit, and the PLC can change from STOP to ON when the designated X	R	N	N
01013	mode	input point is ON (configurable only through system block)			v

2. Clock Running Bit

Addr.	Name	Action and function	R/W	IVC2	IVC1
SM10	10ms clock	Crystal oscillation (period: 10ms). Reverse every half period. The first half period is 0 when the user program starts	R	V	\checkmark
SM11	100ms clock	Crystal oscillation (period: 100ms). Reverse every half period. The first half period is 0 when the user program starts	R	\checkmark	\checkmark
SM12	1s clock	Crystal oscillation (period: 1s). Reverse every half period. The first half period is 0 when the user program starts	R	V	\checkmark
SM13	1min clock	Crystal oscillation (period: 1min). Reverse every half period. The first half period is 0 when the user program starts	R	\checkmark	\checkmark
SM14	1hour clock	Crystal oscillation (period: 1 hour). Reverse every half period. The first half period is 0 when the user program starts	R	V	\checkmark
SM15	Scan cycle oscillation bit	This bit reverses once every scan cycle (The first period is 0 when the user program starts)	R	\checkmark	\checkmark

3. User Program Execution Error

Addr.	Name	Action and function	R/W	IVC2	IVC1
SM20	Instruction execution error	This bit is set upon instruction execution error. The corresponding error type code is written into SD20. This bit is cleared after the execution succeeds	R	\checkmark	\checkmark
SM21	Instruction register number subscript overflow	This bit is set upon instruction execution error. The corresponding error type code is written into SD20	R	\checkmark	\checkmark
SM22	Instruction parameter illegal	This bit is set upon instruction execution error. The corresponding error type code is written into SD20. This bit is cleared after the execution succeeds	R	\checkmark	\checkmark

4. Interrupt Control

Addr.	Name	Action and function	R/W	IVC2	IVC1
SM40	X0 input rising/falling edge interrupt enabling flag bit	Enable when set as 1	R/W	\checkmark	\checkmark
SM41	X1 input rising/falling edge interrupt enabling flag bit	Enable when set as 1	R/W		\checkmark
SM42	X2 input rising/falling edge interrupt enabling flag bit	Enable when set as 1	R/W		\checkmark
SM43	X3 input rising/falling edge interrupt enabling flag bit	Enable when set as 1	R/W		\checkmark
SM44	X4 input rising/falling edge interrupt enabling flag bit	Enable when set as 1	R/W		\checkmark
SM45	X5 input rising/falling edge interrupt enabling flag bit	Enable when set as 1	R/W		\checkmark
SM46	X6 input rising/falling edge interrupt enabling flag bit	Enable when set as 1	R/W		\checkmark
SM47	X7 input rising/falling edge interrupt enabling flag bit	Enable when set as 1	R/W		\checkmark
SM48	COM 0 character transmission interrupt enabling flag bit	Enable when set as 1	R/W		\checkmark
SM49	COM 0 character reception interrupt enabling flag bit	Enable when set as 1	R/W		\checkmark
SM50	COM 0 frame transmission interrupt enabling flag bit	Enable when set as 1	R/W		\checkmark
SM51	COM 0 frame reception interrupt enabling flag bit	Enable when set as 1	R/W		\checkmark
SM52	COM 1 character transmission interrupt enabling flag bit	Enable when set as 1	R/W		\checkmark
SM53	COM 1 character reception interrupt enabling flag bit	Enable when set as 1	R/W		\checkmark
SM54	COM 1 frame transmission interrupt enabling flag bit	Enable when set as 1	R/W		\checkmark
SM55	COM 1 frame reception interrupt enabling flag bit	Enable when set as 1	R/W		\checkmark
SM56	Power failure interrupt	Enable when set as 1	R/W		\checkmark
SM63	PTO (Y0) output finish interrupt enable flag bit	Enable when set as 1	R/W		\checkmark
SM64	PTO (Y1) output finish interrupt enable flag bit	Enable when set as 1	R/W		\checkmark
SM65	High speed counter interrupt enabling flag bit	Enable when set as 1	R/W		\checkmark
SM66	Timed interrupt 0 enabling flag bit	Enable when set as 1	R/W	\checkmark	
SM67	Timed interrupt 1 enabling flag bit	Enable when set as 1	R/W	\checkmark	
SM68	Timed interrupt 2 enabling flag bit	Enable when set as 1	R/W	\checkmark	

5. High Speed Pulse Output Control

Addr.	Name	Function		IVC2	IVC1
SM80	Y0 high speed pulse output control	Y0 high speed pulse output stop instruction		\checkmark	\checkmark
SM81	Y1 high speed pulse output control	Y1 high speed pulse output stop instruction	R/W	\checkmark	\checkmark
SM82	Y0 high speed pulse output monitor	Y0 high speed pulse output mointor (ON: busy. OFF: ready)	R		
SM83	Y1 high speed pulse output monitor	Y1 high speed pulse output mointor (ON: busy. OFF: ready)	R		
SM85	Reset function valid	Output of CLR signal for ZRN instruction enabled	R/W		\checkmark

6. Pulse Capture Monitoring Bit

Addr.	Name	Function	R/W	IVC2	IVC1
SM90	Input X0 pulse capture monitoring bit	Capture rising edge pulse at input X0	R/W	\checkmark	\checkmark
SM91	Input X1 pulse capture monitoring bit	Capture rising edge pulse at input X1	R/W	\checkmark	\checkmark
SM92	Input X2 pulse capture monitoring bit	Capture rising edge pulse at input X2	R/W	\checkmark	\checkmark
SM93	Input X3 pulse capture monitoring bit	Capture rising edge pulse at input X3	R/W	\checkmark	\checkmark
SM94	Input X4 pulse capture monitoring bit	Capture rising edge pulse at input X4	R/W	\checkmark	\checkmark
SM95	Input X5 pulse capture monitoring bit	Capture rising edge pulse at input X5	R/W	\checkmark	\checkmark
SM96	Input X6 pulse capture monitoring bit	Capture rising edge pulse at input X6	R/W	\checkmark	\checkmark
SM97	Input X7 pulse capture monitoring bit	Capture rising edge pulse at input X7	R/W		\checkmark

Note:

1. All the elements in this table are cleared when the PLC changes from STOP to RUN. The pulse capture will fail when the HSNT or SPD instruction is being executed at the same input point. For details, see 6.10.8 SPD: Pulse Detection Instruction and 6.10.1 HCNT: High-speed Counter Drive Instruction.

2. For hardware counters, the total pulse frequency input through X0 ~ X7 (using pulse capture, SPD instruction or HCNT instructions, but not high speed compare instructions) is \leq 80k. For software counters, that frequency (using instructions DHSCS, DHSCI, DHSZ, DHSP or DHST for driven high speed counters) is \leq 30k.

7. Free Port (Port 0)

Addr.	Name	Action and function	R/W	IVC2	IVC1
SM110	Port 0 transmission enabling flag bit	This bit is set when XMT instruction is used, and is cleared after the transmission is over. You can manually clear this bit to halt the current transmission at Port 0. The transmission can resume when power flow is on again	R/W	\checkmark	\checkmark
SM111	Port 0 reception enabling flag bit	This bit is set when RCV instruction is used, and is cleared after the transmission is over. You can manually clear this bit to halt the current transmission at Port 0. The transmission can resume when power flow is on again	R/W	\checkmark	\checkmark
SM112	Port 0 transmission complete flag bit	This bit is set after the transmission is over	R/W	\checkmark	\checkmark
SM113	Port 0 reception complete flag bit	This bit is set after the reception is over	R/W	\checkmark	\checkmark
SM114	Port 0 idle flag bit	This bit is set when the port is idle	R	\checkmark	\checkmark

Note

 $SM112 \sim SM114$ are the flags for the reception, complete and idle states in all communication protocols that are supported by PORT 0. For example, the PORT 0 of IVC1 PLC supports N:N bus, Modbus and Freeport. No matter which protocol is used, the functions of $SM112 \sim SM114$ remain the same.

8. Free Port (Port 1)

Addr.	Name	Action and function	R/W	IVC2	IVC1
SM120	Port 1 transmission enabling flag bit	This bit is set when XMT instruction is used, and is cleared after the transmission is over. You can manually clear this bit to halt the current transmission at Port 1. The transmission can resume when power flow is on again	R/W	\checkmark	\checkmark
SM121	Port 1 reception enabling flag bit	This bit is set when RCV instruction is used, and is cleared after the transmission is over. You can manually clear this bit to halt the current transmission at Port 1. The transmission can resume when power flow is on again	R/W	\checkmark	\checkmark
SM122	Port 1 transmission complete flag bit	This bit is set after the transmission is over	R/W	\checkmark	\checkmark
SM123	Port 1 reception complete flag bit	This bit is set after the reception is over	R/W	\checkmark	\checkmark
SM124	Port 1 idle flag bit	This bit is set when the port is idle	R	\checkmark	\checkmark

Note

 $SM122 \sim SM124$ are the flags for the reception, complete and idle states in all communication protocols that are supported by Port 1. For example, the Port 1 of IVC1 PLC supports N:N bus, Modbus and Freeport. No matter which protocol is used, the functions of $SM122 \sim SM124$ remain the same.

9. Modbus Communication

Addr.	Name	Action and function	R/W	IVC2	IVC1
SM135	Modbus communication complete	This bit is set after the communication is over	R/W	\checkmark	\checkmark
SM136	Modbus communication error	This bit is set upon communication error	R/W		

10. N:N bus Communication

Addr.	Name	Action and function	R/W	IVC2	IVC1
SM140	Station 0 communication error flag		R		
SM141	Station 1 communication error flag		R		
SM142	Station 2 communication error flag		R		
SM143	Station 3 communication error flag		R		
SM144	Station 4 communication error flag		R		
SM145	Station 5 communication error flag		R		
SM146	Station 6 communication error flag		R		
SM147	Station 7 communication error flag		R		
SM148	Station 8 communication error flag		R		
SM149	Station 9 communication error flag		R		
SM150	Station 10 communication error flag		R		
SM151	Station 11 communication error flag		R		
SM152	Station 12 communication error flag		R		
SM153	Station 13 communication error flag		R		
SM154	Station 14 communication error flag		R		
SM155	Station 15 communication error flag		R		
SM156	Station 16 communication error flag		R		
SM157	Station 17 communication error flag		R		
SM158	Station 18 communication error flag		R		
SM159	Station 19 communication error flag		R		\checkmark
SM160	Station 20 communication error flag		R		
SM161	Station 21 communication error flag		R		\checkmark
SM162	Station 22 communication error flag		R		\checkmark
SM163	Station 23 communication error flag		R		\checkmark
SM164	Station 24 communication error flag		R		\checkmark
SM165	Station 25 communication error flag		R		\checkmark
SM166	Station 26 communication error flag		R		\checkmark
SM167	Station 27 communication error flag		R		\checkmark
SM168	Station 28 communication error flag		R		\checkmark
SM169	Station 29 communication error flag		R		\checkmark
SM170	Station 31 communication error flag		R		\checkmark
SM171	Station 32 communication error flag		R		

11. Enabling Flag Of Integrated Analog Channel

Addr.	Name	Action and function	R/W	IVC2	IVC1
SM172	Enabling flag of AD channel 0	Sampling at AD channel 0 is enabled when this bit is set to 1	R/W		\checkmark
SM173	Enabling flag of AD channel 1	Sampling at AD channel 1 is enabled when this bit is set to 1	R/W		\checkmark
SM174	Voltage/current enabling flag of AD channel 0	1 for current input and 0 for voltage input	R/W		\checkmark
SM175	Voltage/current enabling flag of AD channel 1	1 for current input and 0 for voltage input	R/W		\checkmark
SM178	Enabling flag of DA channel 0	Output at DA channel 0 is enabled when this bit is set to 1	R/W		\checkmark

12. Operation Flag Bit

Addr.	Name	Action and function	R/W	IVC2	IVC1
SM180	Zero flag bit	This bit is set when the related calculation result is zero. You can clear or set this bit manually	R/W	\checkmark	\checkmark
SM181	Carry/overflow flag bit	This bit is set when the result of the related calculation is a carry. You can clear or set this bit manually	R/W	\checkmark	\checkmark
SM182	borrow flag bit	This bit is set when the result of the related calculation is a borrow. You can clear or set this bit manually	R/W	\checkmark	\checkmark
SM185	Table comparison flag	This bit is set when the whole table is completed	R/W	\checkmark	\checkmark

13. ASCII Code Conversion Instruction Flag

	Addr.	Name	Action and function		IVC2	IVC1
s	M186	ASC instruction storing mode flag	0: the most and least significant bytes of every word are stored with one ASCII code1: the least significant byte of every word is stored with one ASCII code	R/W		\checkmark

14. System Bus Error Flag

Addr.	Name	Action and function	R/W	IVC2	IVC1
SM190	Basic module bus error flag bit	The bit, when set 1, would stop the system. You can reset this bit by:1. Powering-on the PLC again2. Changing PLC status from STOP to RUN3. Downloading a new program	R	\checkmark	\checkmark
SM191	General module bus error flag bit	 This bit is set and the system raises an alarm when a general module bus operation error occurs This bit is reset automatically when the system error is removed 	R	\checkmark	\checkmark
SM192	Special module bus error flag bit	 This bit is set and the system raises an alarm when a special module bus operation error occurs This bit is reset automatically when the system error is removed 	R	\checkmark	\checkmark

15. Real-Time Clock Error Flag

Addr.	Name	Action and function	R/W	IVC2	IVC1
SM193	R/W of real time clock error	This bit is set upon real-time clock error This bit is automatically cleared if system fault is removed	R	\checkmark	\checkmark

16. EEPROM Flag

Addr.	Name	Action and function	R/W	IVC2	IVC1
SM196	EEPROM write OK flag	This bit is set when EEPROM is not being written	R		\checkmark

17. Counting Direction Of Bi-directional Counters

Addr.	Counter addr.	Function	R/W	IVC2	IVC1
SM200	C200		R/W	V	√
SM201	C201		R/W		\checkmark
SM202	C202		R/W		\checkmark
SM203	C203		R/W		\checkmark
SM204	C204		R/W		\checkmark
SM205	C205		R/W		\checkmark
SM206	C206		R/W		V
SM207	C207		R/W		\checkmark
SM208	C208		R/W		\checkmark
SM209	C209		R/W		\checkmark
SM210	C210		R/W		\checkmark
SM211	C211		R/W		\checkmark
SM212	C212		R/W		\checkmark
SM213	C213		R/W		\checkmark
SM214	C214		R/W		\checkmark
SM215	C215		R/W		\checkmark
SM216	C216	When SM2 is of high level, the corresponding	R/W	\checkmark	\checkmark
SM217	C217	C2_ becomes a down counter	R/W	\checkmark	\checkmark
SM218	C218	When SM2 _ is of low level, the corresponding	R/W	\checkmark	\checkmark
SM219	C219	C2_ becomes a up counter	R/W		\checkmark
SM220	C220		R/W		\checkmark
SM221	C221		R/W		\checkmark
SM222	C222		R/W		\checkmark
SM223	C223		R/W		\checkmark
SM224	C224		R/W		\checkmark
SM225	C225		R/W		\checkmark
SM226	C226		R/W		\checkmark
SM227	C227		R/W		\checkmark
SM228	C228		R/W		V
SM229	C229		R/W		V
SM230	C230]	R/W		\checkmark
SM231	C231	1	R/W	\checkmark	\checkmark
SM232	C232	1	R/W		\checkmark
SM233	C233	1	R/W		\checkmark
SM234	C234	1	R/W		\checkmark
SM235	C235	1	R/W		√

18. Counting Direction And Monitoring Of High Speed Counter

Туре	Addr.	Name	Register content	R/W	IVC2	IVC1
	SM236	C236		R/W		V
Observela	SM237	C237		R/W		V
Single	SM238	C238		R/W		V
phase	SM239	C239	The high & low level of SM2 corresponds to the	R/W		V
single	SM240	C240	counting down 8 up of the counter respectively	R/W		V
counting	SM241	C241	counting down a up of the counter respectively	R/W		V
input	SM242	C242		R/W		V
mput	SM243	C243		R/W		V
	SM244	C244		R/W		V
Single	SM245	C245		R/W		V
phase	SM246	C246		R/W		V
bidirect-	SM247	C247		R/W		V
ional	SM248	C248	When the single phase bi-directional counter and	R/W		V
counting input	SM249	C249	2-phase counter C2 is in the down counting	R/W	\checkmark	\checkmark
	SM250	C250	Inde, the corresponding SM2 _ becomes high	R/W	\checkmark	\checkmark
AB	SM251	C251	SM2 becomes low lovel	R/W	\checkmark	V
phase	SM252	C252		R/W	\checkmark	\checkmark
counting	SM253	C253		R/W	\checkmark	\checkmark
input	SM254	C254		R/W		V
	SM255	C255		R/W		\checkmark

Appendix 2 Special Data Register

Note

1. All special data registers except SD50 ~ SD55 will be initialized when the PLC changes from STOP to RUN.

2. The reserved SD and SM elements are not listed in the table. The reserved SD elements are by default read only.

1. PLC Work State Data

Addr.	Name	Action and function	R/W	IVC2	IVC1	Range
SD00	PLC type	20 means IVC2	R	\checkmark	\checkmark	
SD01	Version	For example, 100 means V1.00	R	\checkmark	\checkmark	
SD02	Capacity of user program	For example, 8 means an 8k step program	R	\checkmark	\checkmark	
SD03	System error code	Store the code of occured system error	R	\checkmark	\checkmark	
SD04	Battery voltage	For example 36 means 3.6V	R	\checkmark	\checkmark	
SD05	Setting of AC power failure detection delay	Configurable only through system block. Any setting smaller than 10ms or bigger than 100ms will be regarded as 10ms or 100ms respectively	R	\checkmark	\checkmark	10 ~ 100ms
SD07	Number of extension I/O module		R	\checkmark	V	
SD08	Number of special module		R	\checkmark	V	
SD09	Setting the input points for X10, 8. Maximum:15). Con	operation control. Decimal (X0 is displayed as 0; figurable through system block	R	\checkmark	\checkmark	\checkmark
SD10	Number of basic module I/O points	The most significant byte: input. The least significant byte: output	R	\checkmark	\checkmark	
SD11	Number of extension module I/O points	The most significant byte: input. The least significant byte: output	R	\checkmark	\checkmark	
SD12	Number of basic module analog I/O points	The most significant byte: input. The least significant byte: output	R	V1.29	\checkmark	

2. Operation Error Code FIFO Area

Addr.	Name	Action and function	R/W	IVC2	IVC1	Range
SD20	Reserved operation error code 0	In the order of arrival, the latest	R	\checkmark		
SD21	Reserved operation error code 1	five operation error codes are	R	\checkmark		
SD22	Reserved operation error code 2	reserved SD20 always stores	R	\checkmark		
SD23	Reserved operation error code 3	the latest error codes	R	V	V	
SD24	Reserved operation error code 4		R	V	\checkmark	

3. FROM/TO Error

Addr.	Name	R/W	IVC2	IVC1	Range
SD25	Special modules' numbering is wrong (starting with 0) when using FROM/TO instruction	R	\checkmark	\checkmark	Initial value: 255
SD26	The I/O chips' numbering is wrong (starting with 0) when refreshing I/O	R	\checkmark	\checkmark	Initial value: 255

4. Scan Time

Addr.	Name	Action and function	R/W	IVC2	IVC1	Range
SD30	Current scan value	Current scan time (unit: ms)	R	V	V	
SD31	Min. scan time	Min. scan time (uint: ms)	R	V	V	
SD32	Max. scan time	Max. scan time (unit: ms)	R	V	V	
SD33	Constant scan time	Default: 0ms. Unit: 1ms. When the constant scan time is longer than the user monitoring overtime setting, user program overtime alarm will be raised. When a scan cycle of user program is longer than the constant scan time, the cycle constant scan mode is invalid automatically and no alarm will be raised. SD33 is regarded as 1000ms when it is set bigger than 1000ms (configurable only through the system block)	R	V	V	0 ~ 1000ms
SD34	User program overtime	Default: 100ms. Unit: 1ms. Any setting smaller than 100 or bigger than 1000 will be regarded as 100 or 1000 respectively. Configurable only through system block	R	\checkmark	\checkmark	100 ~ 1000ms

Note

1. The error tolerance of SD30, SD31 and SD32 is 1ms.

2. It is recommended to set the user program overtime (SD34) at least 5ms bigger than the constant scan time (SD33). Otherwise, due to the influence of system operation and user program, the system is apt to report user program overtime error.

5. Input Filtering Constant Setting

Addr.	Name	Action and function	R/W	IVC2	IVC1	Range
SD35	Input filtering constant	Configurable only through system block	R	\checkmark	V	0 ~ 60

6. High-speed Pulse Output Monitoring

5. SD50:.

SD54: the MSB of the total output pulse number at Y0 and Y1 for PLSY and PLSR instructions.

SD55: the LSB of the total output pulse number at Y0 and Y1 for PLSY and PLSR instructions.

Addr.	Name	R/W	IVC2	IVC1	Range
SD50	Output pulse number at Y0 for PLSY and PLSR instructions (MSB)	R/W		V	
SD51	Output pulse number at Y0 for PLSY and PLSR instructions (LSB)	R/W	\checkmark	V	
SD52	Output pulse number at Y1 for PLSY and PLSR instructions (MSB)	R/W	\checkmark	V	
SD53	Output pulse number at Y1 for PLSY and PLSR instructions (LSB)	R/W	\checkmark	V	
SD54	Total output pulse number at Y0 and Y1 for PLSY and PLSR instructions (MSB)	R/W	\checkmark	V	
SD55	Total output pulse number at Y0 and Y1 for PLSY and PLSR instructions (LSB)	R/W	\checkmark	V	
SD56	Current section of the PLS instruction that outputs Y0	R		V	
SD57	Current section of the PLS instruction that outputs Y1	R		\checkmark	

7. Timed Interrupt Cycle

Addr.	Name	Register content	R/W	IVC2	IVC1	Range
SD66	Cycle of timed interrupt 0	The interrupt will not occur when the value is not within 1 ~ 32767	R/W	\checkmark	\checkmark	1 ~ 32767ms
SD67	Cycle of timed interrupt 1	The interrupt will not occur when the value is not within 1 ~ 32767	R/W	\checkmark	\checkmark	1 ~ 32767ms
SD68	Cycle of timed interrupt 2	The interrupt will not occur when the value is not within 1 ~ 32767	R/W	\checkmark	\checkmark	1 ~ 32767ms

Note:

An error of ±1ms may occur when the system processes a user timed interrupt. To ensure the normal operation of the interrupt, it is recommended to set the cycle of timed interrupts to be bigger or equal to 5ms.

8. Locating Instruction

Addr.	Name	R/W	IVC2	IVC1	Initial value
SD80	The current value of Y0 output locating instruction (MSB)	R/W	V1.29	V	0
SD81	The current value of Y0 output locating instruction (LSB)	R/W	V1.29	V	0
SD82	The current value of Y1 output locating instruction (MSB)	R/W	V1.29	V	0
SD83	The current value of Y1 output locating instruction (LSB)	R/W	V1.29	\checkmark	0
SD84	Basic frequency of executing of instructions ZRN, DRVI and DRVA	R/W	V1.29	\checkmark	0
SD85	Highest frequency of executing of instructions ZRN, DRVI and DRVA (MSB)	R/W	V1.29	\checkmark	100.000
SD86	Highest frequency of executing of instructions ZRN, DRVI and DRVA (LSB)	R/W	V1.29	\checkmark	100.000
SD87	Acceleration or deceleration time of executing of instructions ZRN, DRVI and DRVA	R/W	V1.29	\checkmark	100
SD88	Envelope rising time (ms)	R/W	V1.29	\checkmark	100
SD89	Envelope falling time (ms)	R/W	V1.29	V	100

9. Real-Time Clock

Addr.	Name	Register content	R/W	IVC2	IVC1	Range		
SD100	Year	For real-time clock	R	\checkmark	V	2000 ~ 2099		
SD101	Month	For real-time clock	R	\checkmark	V	1 ~ 12 months		
SD102	Day	For real-time clock	R	\checkmark	V	1 ~ 31 days		
SD103	Hour	For real-time clock	R	\checkmark	V	0 ~ 23 hours		
SD104	Minute	For real-time clock	R	\checkmark	V	0 ~ 59 minutes		
SD105	Second	For real-time clock	R	\checkmark	V	0 ~ 59 seconds		
SD106	Week	For real-time clock	R	V	V	0 (Sunday) ~6 (Saturday)		
Note:	Note:							
You can set these elements only with the TWR instruction or through the host computer								

10. Reception Control And State Of Free Port (Port 0)

Addr.		Name	Register content	R/W	IVC2	IVC1	Range
			b2, b1, b0 000 = 38,400 001 = 10,200				
		SD110.0 ~ SD110.2 port baud rate	001 = 19,200 $010 = 9,600$ $011 = 4,800$ $100 = 2,400$ $101 = 1,200$ $110=57,600$ $111=115,200$				
		SD110.3	0 = 1 stop bit				
		Stop bit	1 = 2 stop bits				
		SD110.4 parity check	0 = even parity 1 = odd parity				
	Free port 0	SD110.5 parity check enabling	0 = no check 1 = check				
SD110	mode state word	SD110.6 Character data bit	Data bit of every character 0 = 8 bits 1 = 7 bits	R	\checkmark	\checkmark	
		SD110.7	1 = start character specified				
		free-port receiving start mode	0 = start character unspecified				
		SD110.8 free-port receiving end	1 = end character specified				
		mode	0 = end character unspecified				
		SD110.9	1: word overtime enabled				
		Free-port word overtime enabling	0: word overtime disabled				
		SD110.10 free-port frame overtime	1 = frame overtime enabled				
		enabling	0 = frame overtime disabled				
		SD110.11	Reserved				
		SD110.12 the most/least significant byte valid	0: word register valid at LSB 1: word register valid at both MSB and LSB				
	SD110.13 ~ SD110.15 Reserved						
SD111	Start ch	aracter		R/W	\checkmark	\checkmark	
SD112	End cha	aracter		R/W	\checkmark	\checkmark	
SD113	Word o	vertime setting	Default: 0ms (word overtime omitted)	R/W	\checkmark	\checkmark	1 ~ 32767ms
SD114	Frame	overtime setting	Default: 0ms (frame overtime omitted)	R/W	\checkmark	\checkmark	1 ~ 32767ms
SD115	Receivi	ng completion message code	Bit 0: set when receiving ends Bit 1: set when specified end character is received Bit 2: set when max. character number is received Bit 3: set upon word overtime Bit 4: set upon frame overtime Bit 5: set upon parity check error Bits 6 ~ 15: reserved	R	V	V	
SD116	Charac	ters currently received		R	\checkmark	\checkmark	
SD117	Total nu	umber of currently received characters		R	V	V	
SD118	Charac	ters currently sent		R		\checkmark	

11. Freeport Reception Control And State (Port 1)

Addr.		Name	Register content	R/W	IVC2	IVC1	Range
			b2, b1, b0				
			000 = 38,400				
		SD120.0., SD120.2	001 = 19,200				
			010 = 9,600				
		Bort haud rate	011 = 4,800				
		For baud rate	100 = 2,400				
			101 = 1,200				
			110=57,600				
			111=115,200				
			0 = 1 stop bit				
		SD120.3 Stop bit	1 = 2 stop bits				
			0 = even parity				
		SD120.4 parity check	1 = odd parity				
		SD120.5 parity check	0 = disabled				
	Free	enabling	1 = enabled				
	port 1		Data bit of every character				
SD120	mode	SD120.6 data bit of every	0: 8-bit character	R	\checkmark		
00120	state	character	1: 7-bit character		`	•	
	word	SD120 7 free-port					
	word	receiving start-character	1: start-character specified				
		mode	0: start-character unspecified				
		SD120.8 free-port					
		receiving end-character	1: end-character specified				
		mode	0: end-character unspecified				
		SD120.9 free port word	1: word overtime enabled				
		overtime enabling	0: word overtime disabled				
		SD120_10 from port frame	1: frame evertime enabled				
		overtime enabling	0: frame overtime disabled				
		SD120_11	Posorvod				
		30120.11	0: word register valid at LSP				
		SD120.12 the most/least	1: word register valid at both the				
		significant byte valid	n. word register valid at both the				
		CD120 12 CD120 15	Reserved				
00404	Chart al	SD120.13 ~ SD120.15	Reserved			./	
SD121	Start cr			R/W	N	N	
SD122	End cha	aracter	Defendly One (mand an ether	R/W	N	N	
SD123	Word of	vertime setting	Default: Ums (word overtime	R/W	\checkmark	\checkmark	0~
			Omitted)				32767ms
SD124	Frame	overtime setting	Default: Ums (frame overtime	R/W	\checkmark	\checkmark	0~
-			omitted)				32767MS
			Bit 0: set when receiving ends				
			Bit 1: set when specified end				
			character is received				
			Bit 2: set when max. character		,	1	
SD125	Receivi	ng completion message code	number is received	R	N	V	
			Bit 3: set upon word overtime				
			Bit 4: set upon frame overtime				
			Bit 5: set upon parity check error				
0.0.1			Bits 6 ~ 15: reserved			,	
SD126	Charac	ters currently recived		R	N	N	
SD127	i otal ni	amper of currently received		R	\checkmark	\checkmark	
SD129	Charact	ters currently sent		P	1/1 20	2	
50120	Charac	Cis currently Sent			v 1.29	v	

12. Modbus/N:N bus Setting

Addr.	Name	R/W	IVC2	IVC1	Range
SD130	Local station No. (PORT 0)	R/W	\checkmark	\checkmark	MOD (1 ~ 32) , EMR (0 ~ 31)
SD131	Max. timeout time of PORT 0 (post-sending and pre-receiving) / N:N bus extra delay	R/W		\checkmark	
SD132	PORT 0 retry times	R/W		V	
SD133	N:N bus network update mode (PORT 0)	R/W		V	1 ~ 13
SD135	Local station No. (Port 1)	R/W	\checkmark	\checkmark	MOD (1 ~ 32), EMR (0 ~ 31)
SD136	Max. timeout time of Port 1 (post-sending and pre-receiving) /N:N bus extra delay	R/W	\checkmark	\checkmark	
SD137	Port 1 retry times	R/W	V	V	0 ~ 100
SD138	N:N bus network update mode (Port 1)	R/W	V	V	1 ~ 13
SD139	Error code of Modbus master (Port 1)	R	V	V	

13. Setting & Reading Of Integrated Analog Signal Channel

Addr.	Name	R/W	IVC2	IVC1	Range
SD172	Average sample value of AD CH0	R			
SD173	Sampling times of AD CH0	R/W			0 ~ 1000
SD174	Average sample value of AD CH1	R			
SD175	Sampling times of AD CH1	R/W		\checkmark	0 ~ 1000
SD178	Output value of DA CH0	R/W		\checkmark	

14. Usage Of DHSP And DHST Instructions

Addr.	Name	R/W	IVC2	IVC1	Range
SD180	MSB of DHSP table comparison output data	R/W	\checkmark	V	
SD181	LSB of DHSP table comparison output data	R/W	V	V	
SD182	MSB of DHST or DHSP table comparison data	R/W	V	\checkmark	
SD183	LSB of DHST or DHSP table comparison data	R/W	V	\checkmark	
SD184	Record No. of the table being executed	R/W	\checkmark	V	

15. Error Flag

Addr.	Name	Action and function	R/W	IVC2	IVC1
SD191	No. of the module where bus error occured	No. of the module where bus operation error occurred	R		\checkmark
SD192	No. of the special module where bus error occured	No. of the special module where bus operation error occured	R		\checkmark

Appendix 3 Reserved Elements

Start addr.	End addr.	Remark
D7940	D7969	Buffer area for transmission of inverter instructions
D7970	D7999	Buffer area for reception of inverter instructions
D7700	D7763	N:N bus network shared area
M1400	M1911	N:N bus network shared area
D6000	D6999	EROMWR instruction operation area

Note

See the related instruction and function description for the usage of the elements in the preceding table.

Appendix 4 Modbus Communication Error Code

Error codes	Description
0x01	Illegal functional code
0x02	Illegal register address
0x03	Data number error
0x10	Communication overtime (longer than the preset maximum communication time)
0x11	Data frame reception error
0x12	Parameter error (mode or master/slave parameter setting error)
0x13	Error occurs because the local station number coincides with the instruction-set station number
0x14	Element address overflow (the data received or sent is too much for the stroring area)

Appendix 5 Inverter Instruction Error Code

Error code	Description
0x1	Illegal functional code
0x2	Illegal register address
0x3	Data error (data outside the range)
0x4	Slave operation failure (including the error due to invalid data, although the data is in the range)
0x5	Valid instruction. Processing. Mainly used to save data to EEPROM
0x6	Slave busy. Please try again later. Mainly used to save data to EEPROM
0x18	Information fram error, including information length error and parity check error
0x20	Parameter unchangeable
0x21	Parameter unchangeable during operation (applicable to only EV3100)
0x22	Password protected

Appendix 6 System Error Code

0 No error v <	Error code	Description	Error type	Description	IVC1	IVC2
1 - 9 Reserved v v v System hardware error System arror System arror User program stops, and ERR indicator turns on. to remove this fault, power off the PLC and check the hardware v v 11 FLASH error System error User program stops, and ERR indicator turns on. To remove this fault, power off the PLC and check the hardware v v 12 Communication port error System error To remove this fault, power off the PLC and check the hardware v v 13 Real-time clock error System error To remove this fault, power off the PLC and check the hardware v v 14 I2C error System error User program stops, and ERR indicator turns on. To remove this fault, power off the PLC and check the hardware v v 20 Serious local I/O error System error To remove this fault, power off the PLC and check the hardware v v 21 Serious local I/O error System error To remove this fault, power off the PLC and check the hardware v v 22 Serious socal I/O error System error To remove this fault, power off the PLC and check the hardware v v 23<	0	No error			\checkmark	\checkmark
System hardware error User program stops, and ERR Indicator turns on. To remove this fault, power off the PLC and check the hardware v 11 FLASH error System error User program stops, and ERR Indicator turns on. To remove this fault, power off the PLC and check the hardware v 12 Communication port error System error User program stops, and ERR Indicator turns on. To remove this fault, power off the PLC and check the hardware v 13 Real-time clock error System error To remove this fault, power off the PLC and check the hardware v 14 I2C error System error To remove this fault, power off the PLC and check the hardware v 20 Serious local I/O error System error To remove this fault, power off the PLC and check the hardware v 21 Serious local I/O error System error System error To remove this fault, power off the PLC and check the hardware v 22 Serious special module error System error System error To remove this fault, power off the PLC and check the hardware v 23 Update error of real-time clock (incorrect time is read during system System error ERR indicator blinks. This alarm is cleared automatically upon the removal of the fa	1~9	Reserved			\checkmark	\checkmark
10 SRAM error System error User program stops, and ERR indicator turns on the PLC and check the hardware v 11 FLASH error System error To remove this fault, power off the PLC and check the hardware v 12 Communication port error System error To remove this fault, power off the PLC and check the hardware v 13 Real-line clock error System error To remove this fault, power off the PLC and check the hardware v 14 I2C error System error To remove this fault, power off the PLC and check the hardware v 14 I2C error System error To remove this fault, power off the PLC and check the hardware v 20 Serious local I/O error System error To remove this fault, power off the PLC and check the hardware v 21 Serious special module error System error To remove this fault, power off the PLC and check the hardware v 22 Serious special module error System error User program stops, and ERR indicator turns on. To remove this fault, power off the PLC and check the hardware v 23 (incorer lastification turns on. to remove this fault), power off the PLC and check the hardware	System hard	lware error		-		
11 FLASH error System error User program stops, and ERR indicator turns on. to check the hardware 12 Communication port error System error To remove this fault, power of the PLC and check the hardware 13 Real-time clock error System error To remove this fault, power of the PLC and check the hardware 14 I2C error System error To remove this fault, power of the PLC and check the hardware 14 I2C error System error To remove this fault, power of the PLC and check the hardware 14 I2C error System error To remove this fault, power of the PLC and check the hardware 20 Serious local I/O error System error To remove this fault, power of the PLC and check the hardware 21 Serious special module error System error ERR indicator blinks. This alarm is cleared automatically upon the removal of the fault √ 22 Serious special module error System error ERR indicator blinks. This alarm is cleared automatically upon the removal of the fault √ 23 Update error of real-time clock (nocreet line is read during system error System error ERR indicator blinks. This alarm is cleared automatically upon the removal of the fault √ 24 EEPAD Mwite / read operation error	10	SRAM error	System error	User program stops, and ERR indicator turns on. To remove this fault, power off the PLC and check the hardware	\checkmark	
12 Communication port error System error User program stops, and ERR indicator turns on. to remove this fault, power of the PLC and oheck the hardware vi 13 Real-time clock error System error To remove this fault, power of the PLC and check the hardware vi 14 I2C error System error To remove this fault, power of the PLC and check the hardware vi 20 Serious local I/O error System error To remove this fault, power of the PLC and check the hardware vi 21 Serious local I/O error System error To remove this fault, power of the PLC and check the hardware vi 22 Serious special module error System error ERR indicator blinks. This alarm is cleared automatically upon the removal of the fault vi 23 Update error of real-time clock (nocrret time is read during system update) System error ERR indicator blinks. This alarm is cleared automatically upon the removal of the fault vi 24 EEPROM write / read operation error System error ERR indicator blinks. This alarm is cleared automatically upon the removal of the fault vi 25 Local analog signal error System error ERR indicator blinks. This alarm is cleared automatically upon the removal of the fault vi <td>11</td> <td>FLASH error</td> <td>System error</td> <td>User program stops, and ERR indicator turns on. To remove this fault, power off the PLC and check the hardware</td> <td>\checkmark</td> <td></td>	11	FLASH error	System error	User program stops, and ERR indicator turns on. To remove this fault, power off the PLC and check the hardware	\checkmark	
13 Real-line clock error System error To remove this fault, power off the PLC and check the hardware √ 14 12C error System error System error To remove this fault, power off the PLC and check the hardware √ 20 Serious local I/O error System error User program stops, and ERR indicator turns on. To remove this fault, power off the PLC and check the hardware √ 21 Serious local I/O error System error User program stops, and ERR indicator turns on. To remove this fault, power off the PLC and check the hardware √ 22 Serious special module error System error ERR indicator blinks. This alarm is cleared automatically upon the removal of the fault √ 23 Update error of real-time clock (incorrect time is read during system update) System error ERR indicator blinks. This alarm is cleared automatically upon the removal of the fault √ 24 EEPROM write / read operation error System error System error ERR indicator blinks. This alarm is cleared automatically upon the removal of the fault √ 26 system special module configuration error System error System error ERR indicator blinks. This alarm is cleared automatically upon the removal of the fault √ 26 system special module configuration error System error System error To remove this fault, download new program or / √ <	12	Communication port error	System error	User program stops, and ERR indicator turns on. To remove this fault, power off the PLC and check the hardware	\checkmark	
14 I2C error System error User program stops, and ERR indicator turns on. or check the hardware 20 Serious local I/O error System error User program stops, and ERR indicator turns on. To remove this fault, power off the PLC and or check the hardware 21 Serious local I/O error System error To remove this fault, power off the PLC and or check the hardware 22 Serious special module error System error ERR indicator blinks. This alarm is cleared automatically upon the removal of the fault v 23 Update error of real-time clock (incorrect time is read during system update) System error ERR indicator blinks. This alarm is cleared automatically upon the removal of the fault v 24 EEPROM write / read operation error System error ERR indicator blinks. This alarm is cleared automatically upon the removal of the fault v 26 System special module configuration error System error ERR indicator blinks. This alarm is cleared automatically upon the removal of the fault v 41 System configuration file error System error User program stops, and ERR indicator turns on. To remove this fault, download new program or v v 42 Data block file error System error User program stops, and ERR indicator turns on. To remove this fault, download new system v/ v 43 Battery-backed data lost System error User program stops, and	13	Real-time clock error	System error	User program stops, and ERR indicator turns on. To remove this fault, power off the PLC and check the hardware	\checkmark	
External setting error (20 ~ 23) Serious local I/O error System error User program stops, and ERR indicator turns on. to remove this fault, power off the PLC and check the hardware √ 21 Serious extension I/O error System error ERR Indicator blinks. This alarm is cleared automatically upon the removal of the fault √ 22 Serious special module error System error ERR Indicator blinks. This alarm is cleared automatically upon the removal of the fault √ 23 Update error of real-line clock (incorrect time is read during system update) System error ERR indicator blinks. This alarm is cleared automatically upon the removal of the fault √ 24 EEPROM write / read operation error System error ERR indicator blinks. This alarm is cleared automatically upon the removal of the fault √ 26 system special module configuration error System error ERR indicator blinks. This alarm is cleared automatically upon the removal of the fault √ 40 User program file error System error System error To remove this fault, download new program on format the disk. √ 41 System configuration file error System error System error To remove this fault, download new system configuration file orrom at the disk. √ √	14	I2C error	System error	User program stops, and ERR indicator turns on. To remove this fault, power off the PLC and check the hardware	\checkmark	
20 Serious local I/O error System error User program stops, and ERR indicator turns on. To remove this fault, power off the PLC and check the hardware √ 21 Serious extension I/O error System error ERR indicator blinks. This alarm is cleared automatically upon the removal of the fault √ 22 Serious special module error update System error ERR indicator blinks. This alarm is cleared automatically upon the removal of the fault √ 23 (incorrect time is read during system update) System error System error ERR indicator blinks. This alarm is cleared automatically upon the removal of the fault √ 24 EEPROM write / read operation error update) System error System error ERR indicator blinks. This alarm is cleared automatically upon the removal of the fault √ 26 System special module configuration error System error ERR indicator blinks. This alarm is cleared automatically upon the removal of the fault √ 40 User program file error System error User program stops, and ERR indicator turns on. To remove this fault, download new program or format the disk √ 41 System configuration file error System error User program stops, and ERR indicator turns on. To remove this fault, download new system configuration files or format the disk √ 42 Data block file error System error User program keeps running ERR indicator turns on.	External set	ting error (20 ~ 23)				
21 Serious extension I/O error System error ERR Indicator blinks. This alarm is cleared automatically upon the removal of the fault √ 22 Serious special module error System error ERR Indicator blinks. This alarm is cleared automatically upon the removal of the fault √ 23 (incorrect time is read during system update) System error ERR Indicator blinks. This alarm is cleared automatically upon the removal of the fault √ 24 EEPROM write / read operation error System error ERR Indicator blinks. This alarm is cleared automatically upon the removal of the fault √ 25 Local analog signal error System error ERR Indicator blinks. This alarm is cleared automatically upon the removal of the fault √ 26 error System error ERR Indicator blinks. This alarm is cleared automatically upon the removal of the fault √ 27 Local analog signal error System error ERR Indicator blinks. This alarm is cleared automatically upon the removal of the fault √ 26 error System error ERR Indicator blinks. This alarn is cleared automatically upon the removal of the fault √ 27 Local analog signal error System error User program stops, and ERR indicator turns on. To remove this fault, download new system or. To remove this f	20	Serious local I/O error	System error	User program stops, and ERR indicator turns on. To remove this fault, power off the PLC and check the hardware	\checkmark	
22 Serious special module error System error ERR indicator blinks. This alarm is cleared automatically upon the removal of the fault 23 Update error of real-time clock (incorrect time is read during system update) System error ERR indicator blinks. This alarm is cleared automatically upon the removal of the fault 24 EEPROM write / read operation error System error System error ERR indicator blinks. This alarm is cleared automatically upon the removal of the fault 25 Local analog signal error System error System error ERR indicator blinks. This alarm is cleared automatically upon the removal of the fault 26 System special module configuration error System error System error ERR indicator blinks. This alarm is cleared automatically upon the removal of the fault 40 User program file error System error System error To remove this fault, download new program or format the disk 41 System configuration file error System error System error To remove this fault, download new data block 42 Data block file error System error User program keeps running ERR indicator 43 Battery-backed data lost System error	21	Serious extension I/O error	System error	ERR indicator blinks. This alarm is cleared automatically upon the removal of the fault	\checkmark	
23 Update error of real-time clock (incorrect time is read during system update) System error ERR indicator blinks. This alarm is cleared automatically upon the removal of the fault Image: Clock of the fault 24 EEPROM write / read operation error System error ERR indicator blinks. This alarm is cleared automatically upon the removal of the fault Image: Clock of the fault 25 Local analog signal error System error ERR indicator blinks. This alarm is cleared automatically upon the removal of the fault Image: Clock of the fault 26 System special module configuration error System error ERR indicator blinks. This alarm is cleared automatically upon the removal of the fault Image: Clock of the fault 20 User program file error System error User program stops, and ERR indicator turns on. To remove this fault, download new program or format the disk Image: Clock of the fault Image: Clock of the fault 41 System configuration file error System error User program stops, and ERR indicator turns on. To remove this fault, download new system Image: Clock of the fault Image: Clock of the fault 42 Data block file error System error User program stops, and ERR indicator turns on. To remove this fault, download new data block Image: Clock of the fault Image: Clock of the fault Image: Clock of the fault Image: Clock	22	Serious special module error	System error	ERR indicator blinks. This alarm is cleared automatically upon the removal of the fault	\checkmark	
24 EEPROM write / read operation error System error ERR indicator blinks. This alarm is cleared automatically upon the removal of the fault √ 25 Local analog signal error System error ERR indicator blinks. This alarm is cleared automatically upon the removal of the fault √ 26 System special module configuration error System error ERR indicator blinks. This alarm is cleared automatically upon the removal of the fault √ 26 System special module configuration error System error ERR indicator blinks. This alarm is cleared automatically upon the removal of the fault √ 20 User program file error System error User program stops, and ERR indicator turns on. To remove this fault, download new program or format the disk √ √ 41 System configuration file error System error User program stops, and ERR indicator turns on. To remove this fault, download new system configuration file error √ √ 42 Data block file error System error User program stops, and ERR indicator turns on. To remove this fault, download new data block √ √ 43 Battery-backed data lost System error User program keeps running ERR indicator √ √ 44 Forced-table lost System error User program keeps runnin	23	Update error of real-time clock (incorrect time is read during system update)	System error	ERR indicator blinks. This alarm is cleared automatically upon the removal of the fault	\checkmark	
25 Local analog signal error System error ERR indicator blinks. This alarm is cleared automatically upon the removal of the fault √ 26 System special module configuration error System error ERR indicator blinks. This alarm is cleared automatically upon the removal of the fault √ 26 System special module configuration error System error ERR indicator blinks. This alarm is cleared automatically upon the removal of the fault √ 40 User program file error System error User program stops, and ERR indicator turns on. To remove this fault, download new program or format the disk √ √ 41 System configuration file error System error User program stops, and ERR indicator turns on. To remove this fault, download new system vf √ √ 42 Data block file error System error User program stops, and ERR indicator turns on. To remove this fault, download new data block file or format the disk √ √ 43 Battery-backed data lost System error User program keeps running ERR indicator √ √ 44 Forced-table lost System error User program keeps running. ERR indicator √ √ 45 User information file error System error User program keeps running. ERR indicator is	24	EEPROM write / read operation error	System error	ERR indicator blinks. This alarm is cleared automatically upon the removal of the fault	\checkmark	
26System special module configuration errorSystem errorERR indicator blinks. This alarm is cleared automatically upon the removal of the fault \checkmark Storage error (40 ~ 45)User program file errorSystem errorUser program stops, and ERR indicator turns on. To remove this fault, download new program or format the disk \checkmark 40User program file errorSystem errorUser program stops, and ERR indicator turns on. To remove this fault, download new system configuration file error \checkmark 41System configuration file errorSystem errorUser program stops, and ERR indicator turns on. To remove this fault, download new system configuration files or format the disk \checkmark 42Data block file errorSystem errorUser program stops, and ERR indicator turns on. To remove this fault, download new data block file or format the disk \checkmark 43Battery-backed data lostSystem errorUser program keeps running ERR indicator blinks. To remove this fault, clear the register, or force, or format the disk, or reset \checkmark 44Forced-table lostSystem errorUser program keeps running ERR indicator blinks. To remove this fault, clear the register, or force, or format the disk, or reset \checkmark 45User information file errorSystem errorUser program keeps running ERR indicator is off. To remove this fault, download new program and data block files, or format the disk \checkmark	25	Local analog signal error	System error	ERR indicator blinks. This alarm is cleared automatically upon the removal of the fault	\checkmark	
Storage error (40 ~ 45) User program file error System error User program stops, and ERR indicator turns on. To remove this fault, download new program or format the disk 41 System configuration file error System error User program stops, and ERR indicator turns on. To remove this fault, download new system configuration files or format the disk V 42 Data block file error System error System error User program stops, and ERR indicator turns on. To remove this fault, download new system configuration files or format the disk V 43 Battery-backed data lost System error System error To remove this fault, download new data block file or format the disk. V 44 Forced-table lost System error System error User program keeps running. ERR indicator format the disk, or reset V 45 User information file error System error System error User program keeps running. ERR indicator is doft. To remove this fault, download new program V 46 ~ 59 Reserved Issuer program keeps running ERR indicator is off. To remove this fault, download new program V	26	System special module configuration error	System error	ERR indicator blinks. This alarm is cleared automatically upon the removal of the fault	\checkmark	
40 User program file error System error User program stops, and ERR indicator turns on. To remove this fault, download new program or format the disk 41 System configuration file error System error User program stops, and ERR indicator turns on. To remove this fault, download new system configuration files or format the disk V V 42 Data block file error System error User program stops, and ERR indicator turns on. To remove this fault, download new system configuration files or format the disk V V 43 Battery-backed data lost System error User program keeps running ERR indicator blinks. To remove this fault, clear the register, or format the disk, or reset V V V 44 Forced-table lost System error User program keeps running. ERR indicator blinks. To remove this fault, clear the register, or force, or format the disk, or reset V 45 User information file error System error User program keeps running ERR indicator is dift. To remove this fault, download new program and data block files, or format the disk V	Storage erro	r (40 ~ 45)				1
41 System configuration file error System error User program stops, and ERR indicator turns on. To remove this fault, download new system configuration files or format the disk √ 42 Data block file error System error User program stops, and ERR indicator turns on. To remove this fault, download new data block √ 43 Battery-backed data lost System error User program keeps running ERR indicator √ 44 Forced-table lost System error User program keeps running. ERR indicator √ 45 User information file error System error User program keeps running ERR indicator is off. To remove this fault, clear the register, or force, or format the disk, or reset √ 45 User information file error System error User program keeps running ERR indicator is off. To remove this fault, download new program and data block files, or format the disk √	40	User program file error	System error	User program stops, and ERR indicator turns on. To remove this fault, download new program or format the disk	\checkmark	\checkmark
42 Data block file error System error User program stops, and ERR indicator turns on. To remove this fault, download new data block file or format the disk √ √ 43 Battery-backed data lost System error User program keeps running ERR indicator blinks. To remove this fault, clear the register, or format the disk, or reset √ √ 44 Forced-table lost System error User program keeps running. ERR indicator blinks. To remove this fault, clear the register, or force, or format the disk, or reset √ √ 45 User information file error System error User program keeps running ERR indicator is off. To remove this fault, download new program and data block files, or format the disk √ √ 46 ~ 59 Reserved	41	System configuration file error	System error	User program stops, and ERR indicator turns on. To remove this fault, download new system configuration files or format the disk	\checkmark	V
43Battery-backed data lostSystem errorUser program keeps running ERR indicator blinks. To remove this fault, clear the register, or format the disk, or reset $$ 44Forced-table lostSystem errorUser program keeps running. ERR indicator blinks. To remove this fault, clear the register, or force, or format the disk, or reset $$ 45User information file errorSystem errorUser program keeps running ERR indicator is off. To remove this fault, download new program and data block files, or format the disk $$ 46 ~ 59ReservedImage: Comparison of the disk disk disk disk disk disk disk disk	42	Data block file error	System error	User program stops, and ERR indicator turns on. To remove this fault, download new data block file or format the disk	\checkmark	\checkmark
44 Forced-table lost System error User program keeps running. ERR indicator blinks. To remove this fault, clear the register, or force, or format the disk, or reset √ √ 45 User information file error System error User program keeps running ERR indicator is off. To remove this fault, download new program and data block files, or format the disk √ √ 46 ~ 59 Reserved	43	Battery-backed data lost	System error	User program keeps running ERR indicator blinks. To remove this fault, clear the register, or format the disk, or reset	\checkmark	V
45User information file errorSystem errorUser program keeps running ERR indicator is off. To remove this fault, download new program and data block files, or format the disk $$ 46 ~ 59Reserved	44	Forced-table lost	System error	User program keeps running. ERR indicator blinks. To remove this fault, clear the register, or force, or format the disk, or reset	\checkmark	V
46 ~ 59 Reserved	45	User information file error	System error	User program keeps running ERR indicator is off. To remove this fault, download new program and data block files, or format the disk	\checkmark	\checkmark
	46 ~ 59	Reserved				

Error code	Description	Error type	Description	IVC1	IVC2
Instruction e	xecution error (60 \sim 75)				
60	User program compilation error	Execution error	User program stops, and ERR indicator turns on.		\checkmark
61	User program operation overtime error	Execution error	User program stops, and ERR indicator turns on.	\checkmark	\checkmark
62	illegal user program instruction execution error	Execution error	User program stops, and ERR indicator turns on.	\checkmark	\checkmark
63	Illegal element type of instruciton operand	Execution error	User program stops, and ERR indicator turns on.		\checkmark
64	Illegal instruction operand value	Execution error			\checkmark
65	Outside instruction element range	Execution error	Lloor program koone rupping. EDD indicator		
66	Subprogram stack overflow	Execution error	loser program keeps running, ERR indicator		
67	User interrupt request queue overflow	Execution error	prompted in SD20		
68	Illegal label jump or subprogram call	Execution error	prohipted in 3D20		
69	Divided by 0 error	Execution error			
70	Definition error of stack operated	Execution error	When stack size, or stack elements are smaller than zero, or stack element number exceeds the limit of stack size		\checkmark
71	Reserved			\checkmark	V
72	Undefined user subprogram or interrupt subprogram	Execution error		\checkmark	\checkmark
73	Using FROM/TO instruciton to access module not existing	Execution error			\checkmark
74	I/O error when using FROM/TO instruction	Execution error			\checkmark
75	I/O error when using REF instruction	Execution error			\checkmark
76	Cannot set real time clock time using TWR	Execution error			\checkmark
77	Parameter 3 of PLSR instruction inappropriate under constant scan	Execution error			\checkmark
78	BFM unit of accessed special module exceeds range	Execution error			\checkmark
79	ABS Data Read Timeout	Execution error		\checkmark	
80	ABS Data Read and Check Error	Execution error		\checkmark	

Appendix 7 Modbus Communication Protocol (IVC Series)

1. Modbus Communication Protocol Overview

IVC series small PLC has two communication ports: PORT 0 (also the programming port), which supports Modbus slave station, and Port 1, which supports Modbus master station and slave station (configurable through ConstrolStar). Their features include:

- 1. Using RS485 or RS232 port, with RS-232 3-line system as the physical interface.
- 2. Supportive of RTU mode and ASCII mode, but not of the change of the ASCII ending character.
- 3. Being the Modbus slave station, the addresses range from 1 to 31.
- 4. Supportive of broadcast mode. The broadcast is effective for write and sub-function codes of diagnosis.

5. Suppoting baud rates including 38,400 bps, 19,200 bps, 9,600 bps, 4,800 bps, 2,400 bps and 1,200 bps. (Default: 19200, 8 bits, 1 stop bit, even check)

6.Supportive of data field 2 × 252 bytes (ASII mode) or 252 bytes (RTU mode).

2. Supported Modbus Function Code and Element Addressing

The slave station supports function codes 01, 02, 03, 05, 06, 08, 15, 16 (decimal). Pay attention to the following points during the reading:

Relationship between read-write element function code and the element

Function code	Name of function code	Modicon data address	Type of operational element	Remark
01	read coil status	0 ^{Note 1} :xxxx	Y, X, M, SM, S, T, C	Bit read
02	read discrete input status	1 Note 2:XXXX	Х	Bit read
03	read register status	4 Note 3:XXXX Note 4	D, SD, Z, T, C	Word read
05	write single coil status	0:xxxx	Y, M, SM, S, T, C	Word write
06	write single register status	4:xxxx	D, SD, Z, T, C	Word write
15	write multiple coils status	0:xxxx	Y, M, SM, S, T, C	Bit write
16	write multiple registers status	4:xxxx	D, SD, Z, T, C	Word write

Note:

1. 0 means "coil".

2. 1 means "discrete input".

3. 4 means "register".

4. xxxx means range "1 ~ 9999". Each type has an independent logic address range of 1 to 9999 (protocol address starts from 0). 5. 0, 1 and 4 do not have the physical meaning and are not involved in actual addressing.

6. Users shall not write X element with function codes 05 and 15; otherwise, the system will not feed back the error information if the written operand and data are correct, but the system will not perform any operation on the write instruction.

Relationship between PLC Element and Modbus Communication Protocol Address

Element	Туре	Physical element	Protocol address	Supported function code	Notes
Y	bit	Y0 to Y377 (octal code) 256 points in total	0000 ~ 0255	01, 05, 15	output status, element code: Y0 ~ Y7, Y10 ~ Y17
x	bit	X0 to X377 (octal code) 256 points in total	1200 ~ 01455 0000 ~ 0255	01, 05, 15 02	input status, it supports two kinds of address, the element code is same as above
М	bit	M0 to M1999	2000 ~ 3999	01, 05, 15	
SM	bit	SM0 to SM255	4400 ~4655	01, 05, 15	
S	bit	S0 ~ S991	6000 ~ 6991	01, 05, 15	
Т	bit	T0 ~ T255	8000 ~ 8255	01, 05, 15	status of T element
С	bit	C0 ~ C255	9200 ~ 9455	01, 05, 15	status of C element
D	word	D0 ~ D7999	0000 ~ 7999	03, 06, 16	
SD	word	SD0 ~ SD255	8000 ~ 8255	03, 06, 16	
Z	word	Z0 ~ Z15	8500 ~ 8515	03, 06, 16	

Element	Туре	Physical element	Protocol address	Supported function code	Notes
Т	word	T0 ~ T255	9000 ~ 9255	03, 06, 16	current value of T element
С	word	C0 ~ C199	9500 ~ 9699	03, 06, 16	current value of C element (WORD)
С	Double word	C200 ~ C255	9700 ~ 9811	03, 16	current value of C element (WORD)
Note: The protoc address st data. For e the read a	col address is the arts from 0 and t example, if M0 pr nd write of M0 is	e address used on data transfer and on he logic address of Modicon data be rotocol address is 2000, and its corre completed through the protocol addr	corresponds with th gins with 1, that is, sponding logic add ress, for example: 1	ne logic address of M protocol address + ² Iress of Modicon data read M0 element frar	lodicon data. The protocol I = logic address of Modicon a will be 0:2001. In practice, ne (sent from the master):

Abnormal response description:

Abnormal code	Definition
0x01	Illegal function code
0x02	Illegal register address
0x03	Illegal data

Note the following:

1. Elements X and Y use octal system. There are 256 points in total from X0 to X377, 256 points from Y0 to Y377, with the combinations of Y0 ~ Y7, Y10 ~ Y17 and Y20 ~ Y27. etc.

2. Two addressing methods are available for Element X. One is the protocol address of 1200-1455 with corresponding function codes of 01, 05 and 15; the other is the protocol address of 0-255 with function code 02.

3. Processing of double-word element: C element is a counter. It has status and current value. C200 ~ C255 are 32-bit elements, but each C element in the range will get two protocol addresses during the protocol address compiling. For example: The protocol address of C200 is 9700 ~ 9701. When reading the elements though Modbus, both the starting protocol address and the number of the read elements shall be even number.

4. For most SM, SD elements, the real value cannot be written through Modbus, but PLC salve station will still return "OK" to indicate the completion of write operation, which is allowable.

5. In addition, the Modbus communication protocol of IVC2 supports the read and write of double word element, LONG INT variable and floating point number. In the PLC of IVC2, 32-bit data are stored with high bits at high address. For example, a 32-bit data is stored in two D elements (D3 and D4), with 16 high bits in D3 and 16 low bits in D4, as shown in the following figure: (Refer to the description for the specific example)

3. Modbus Function Code Description

3.1 Read coil status (0x01)

Up to 256 bit-element can be read in IVC series PLC.

1. Request frame

Address	Eunction code (01H)	Initial a	ddress	Number of	elements	Check code	
Address		Н	L	Н	L	(CRC or LRC)	

2. Response frame

If the read address is not the times of 8, the remaining bits will be filled with 0 (starting with the high bits).

Address	Function code (01H)	Number of by (n)	rtes read	Read data No.1		Read data No.1		Read data No.1		Read data No.1			Rea	ad da No.n	ita	Check code (CRC or LRC
		•	E	37	B6	B5	B4	B3	B2	B1	B0	1				

3.2 Read discrete input status (0x02)

In the PLC of GCM series, it specially refers to X element. The function code only supports the read function of X element with the maximum read number of 256.

1. Request frame

Address	Euroction code (02H)	starting	address	Number of	elements	Check code	
Address		Н	L	Н	L	(CRC or LRC)	

2. Response frame

If the read address is not the times of 8, the remaining bits will be filled with 0 (starting with the high bits).

Address	Function code (02H)	Number of by (n)	rtes read	Read data No.1		Read data No.1		Read data No.1		Read data No.1			Re	ad da No.n	ata	Check code (CRC or LRC
			E	37	B6	B5	B4	B3	B2	B1	В0]				

3.3 Read Holding Registers (0x03)

It refers to reading the value of data (word) register at the slave station, with the maximum number of registers of 125 read each time. It does not support broadcast.

1. Request frame

Address	Euroction Code (03H)	Starting	address	Number of	elements	Check code		
Addless		Н	L	Н	L	(CRC or LRC)		

2. Response frame

Address	Function code (03H)	Number of bytes read (n)	Read	data No.1	 Read data No.n		Check code
			Н	L	Н	L	

3.4 Force (Write) Single Coil (0x05)

Force (Write) single coil writes bit element value to the slave station and supports broadcast, i.e. writing the same element to all slave stations. It supports 1 bit element at most.

1. Request frame

Address	Function Code (05H)	Starting	address	Written eler	ment value	Check code
		Н	L	Н	L	(CRC or LRC)

Note: The written value of the element is 0xFF00 (ON, 1) or 0x0000 (OFF, 0).

2. Response frame

Response frame is the repeat of request frame.

Address	Function code (05H)	Starting	address	Written eler	ment value	Check code
		Н	L	Н	L	(CRC or LRC)

3.5 Preset (write) Single Register (0x06)

Preset (Write) single register writes word element value to the slave station and supports broadcast, i.e. writing the same element to all slave stations. It supports 1 bit element at most.

1. Request frame

Address	Function code (06H)	Starting	address	Written eler	ment value	Check code
		Н	L	Н	L	(CRC or LRC)

2. Response frame

Response frame is the repeat of Request frame.

Address	Euroction code (06H)	Starting	address	Written elen	nent value	Check code
Address		Н	L	Н	L	(CRC or LRC)

3.6 Return Diagnostic Check (0 x 08)

Diagnostic register and communication error information can be obtained through returning diagnostic check.

Diagnostic code	Description
0x00	Return Request frame
0x 01	Restart Comm Option
0x 04	Listen Only Mode of Slave Station
0x0a	Clear Ctrs and Diagnostic Reg
0x0b	Return Bus Message Count
0x0c	Return Bus CRC Error Count
0x0d	Return Bus Exception Error Cnt
0x0e	Return Slave Message Count
0x0f	Return Slave No Response Cnt
0x12	Return Bus Char. Overrun Cnt

The frame description of sub-function code is as follows.

Return request frame (0x00):

1. Request frame

Address	Function code (0x08H)	Functio	Any ch	aracter	Check code
		(0x00H)	(0x00H)	Н	L

2. Response frame

Return request frame intact.

Address	Function code (0x08H)	Functio	Any ch	aracter	Check code	
		(0x00H)	(0x00H)	Н	L	(CRC or LRC)

Restart communication option (0x01):

After receiving the frame, PLC will exit from Listen Only mode (Broadcast frame is supported).

1. Request frame

The normal Data field is 0x00 00 or 0xff 00.

Address	Function code (0x08H)	Fund	ction word	Data f	field	Check code
		0x00H	0x01H	Н	L	(CRC or LRC)

2. Response frame

Address	ddress Function code (0x08H)	Functio	on word	Data f	ield	Check code
Address		0x00H	0x01H	Н	L	(CRC or LRC)

Listen only mode of slave station (0x04):

Slave station enters Listen Only mode. None of the instructions will be executed or responded. The slave station can only recognize the restart communication option instruction and enters the online mode after receiving the instruction (Broadcast frame is supported).
1. Request frame

Address	Function code (0x08H)	Function word		Data field		Check code
		(0x00H)	(0x04H)	0x00H	0x00H	(CRC or LRC)

2. Response frame

No return

Clear counter and diagnostic register (0x0A):

Clear all counters (Broadcast frame is supported).

1. Request frame

Address	Eunction code (0x08H)	Function word		Data field		Check code
Address		(0x00H)	(0x0AH)	0x00H	0x00H	(CRC or LRC)

2. Response frame

Address	Function	Function word		Data field		Check code
	code (0x08H)	(0x00H)	(0x0AH)	0x00H	0x00H	(CRC or LRC)

Return bus message count (0x0B):

Record the total number of the messages to all master stations from the slave stations since the last starting, clearing and power-on of counter, which excludes the message of CRC error.

1. Request frame

Address	Function code (0x08H)	Function word		Data field		Check code
		(0x00H)	(0x0BH)	0x00H	0x00H	(CRC or LRC)

2. Response frame

Address	Address Function code (0x08H)	Functio	Data	field	Check code
Address		(0x00H)	(0x0BH)	Н	L

CRC error count (0x0C):

Record the number of CRC errors received by slave station since the last starting, clearing and power-on of counter.

1. Request frame

Address	Function code (0x08H)	Function word		Data field		Check code
		(0x00H)	(0x0CH)	0x00H	0x00H	(CRC or LRC)

2. Response frame

Address	Function code (0x08H)	Function word		Data field		Check code
		(0x00H)	(0x0CH)	Н	L	(CRC or LRC)

Return Slave Exception Error Count (0x0D):

Record the number of the exception error that detected by slave station since the last starting, clearing and power-on of counter, which includes the error detected in the broadcast message.

1. Request frame

Address	Function code (0x08H)	Function word		Data field		Check code
Address		(0x00H)	(0x0DH)	0x00H	0x00H	(CRC or LRC)

2. Response frame

Address	Function code (0x08H)	Function word		Data field		Check code
Address		(0x00H)	(0x0DH)	Н	L	(CRC or LRC)

Return Slave Message Count (0x0E)

Record the number of the addressing messages received by the slave station since the last starting, clearing and power-on of counter.

1. Request frame

Address	Eunction code (0x08H)	Function word		Data field		Check code
		(0x00H)	(0x0EH)	0x00H	0x00H	(CRC or LRC)

2. Response frame

Address	Function code (0x08H)	Function word		Data field		Check code
		(0x00H)	(0x0EH)	Н	L	(CRC or LRC)

Return Slave No Response Count (0x0F)

Record the number of messages that have not returned to the slave station since the last starting, clearing and power-on of counter.

1. Request frame

Address	Eunction code (0x08H)	Function word		Data field		Check code
Address		(0x00H)	(0x0FH)	0x00H	0x00H	(CRC or LRC)

2. Response frame

Address	Eurotion code (0x08H)	Functio	Data	field	Check code	
Address		(0x00H)	(0x0FH)	Н	L	(CRC or LRC)

Return Bus Character Overrun Count (0x12)

Record the number of the messages that cannot be addressed due to the character overrun since the last starting, clearing and power-on of counter.

1. Request frame

Addross	Function	Functio	Data	field	Check code		
Address	code (0x08H)	(0x00H)	(0x12H)	0x00H	0x00H	(CRC or LRC)	

2. Response frame

Addross	Function	Functio	Data	field	Check code		
Address	code (0x08H)	(0x00H)	(0x12H)	Н	L	(CRC or LRC)	

3.7 Force (Write) Multiple Coils (0x0F Hex)

At most 1968 bit elements (0x07b0) can be written and the number is changeable according to the defined range. 1. Request frame

	Addres	Function	Stai add	rting ress	Num elerr	ber of nents	Number)	Writte	n nt		W	/ritten	+	Check	code
	7100100	(0FH)	Н	L	Н	L	of bytes (i	va	lue No	p.1		valu	ue No.	N ((CRC c	r LRC)
							Γ	B7	B6	B5	B4	B3	B2	B1	B0	
2	. Respon	se frame					L		I I							
,	Adroop	Function		st	arting a	ddress	Nur	nber	of elem	ents			C	heck of	code	
'	Audress	code (0FH)	ſ		Η	L	Н			L			(CF	RC or	LRC)	

3.8 Preset(reset) Multiple Registers (0x10 Hex)

At most 120 registers (0x78) can be written

1. Request frame

	Function	Starting	Number of	Number	Written element	Written element	Chock codo
Address	code	address	elements	of bytes	value No.1	 value No.N	
	(0x10H)	H L	H L	(n)	H L	H L	

2. Response frame

Address	Function code (0x10H)	(0x10H) Starting H	rting ress	Number of elements		Check code (CRC or LRC)			
		Н	L	Н	L				

3.9 Faulty Response Frame (0x80+function code)

Response Frame:

Addrogo	Eurotian and	Error code (coe above)	Check code
Address	Function code	End code (see above)	(CRC or LRC)

Function code refers to the function code of the captured request frame + 0x80

3.10 Points To Note

1. Refer to the address classification of elements, the elements read each time shall be of the same type. For example, elements X and Y cannot be read in one frame.

2. The address and data range of the element shall be within the range specified by the protocol. For example: For Y element, the protocol address range is 0000 ~ 0255 (Y0-Y377):

- If the read starting address is 1 and 256 elements are read, address error will be returned (error code 02), because there are only 255 Y elements that start with 1.
- If the read starting address is 0 and 257 elements are read, data error will be returned (error code 03), because the actual defined number of Y elements is only 256.
- If the read starting address is 0 and 256 elements are read, the status of 256 elements will be returned.

In other words, the read number of the elements must be within the actually defined range. It is true for read/write of bit/word elements.

4. Example Of Modbus Communication Control

Rather than transmitting any message actively, the Modbus slave station only decides whether to respond to the message from the master station based on the specific situation after receiving the message for the local station. The slave station only supports Modbus function codes 01, 02, 03, 05, 06, 08, 15 and 16. The rest will be responded with illegal function code (except broadcast frame).

Read and write of element:

Except function code 08, the other supported function codes can read and write element. In principle, one frame can read up to 2000 bit elements 125 word elements, and write 1968 bit elements and 120 word elements at most. However, the real protocol addresses are separate and discontinuous for different elements, therefore, when reading or writing an element, the elements read at one time can only be the same type and the maximum number of the read or written elements is related to the actually defined number of the elements. For example, when reading Y element (Y0-Y377), the protocol address ranges from 0 to 255, the logic address of the corresponding Modicon data is 1-256 and the maximum number of elements can be read is 256. See the following examples:

Note: The address of the slave station is 01, the last two bytes are CRC check code and the second byte is function code.

1. XMT from master station: 01 01 00 00 01 00 3D 9A

01 address; 01 function code; 00 00 starting address; 01 00 number of read elements; 3D 9A check Slave station response: return correct response

2. XMT from master station: 01 01 00 00 01 01 FC 5A

The master station reads 01 01 elements (257), which is over the defined range of Y elements.

Slave station response: 01 81 03 00 51

The response of the slave station is illegal data, because 257>256, 256 is the allowed maximum number of Y elements.

3. XMT from master station: 01 01 00 64 00 A0 7D AD

00 64(decimal 100) is the starting address for master station to read, 00 A0 (decimal 160) is the number of the elements. Slave station response: 01 81 02 C1 91 The response of the slave station is illegal address, because there are only 156 Y elements which are defined to start from 100 and 160 Y elements have exceeded the number. 4. XMT from master station: 01 01 01 2C 00 0A 7C 38 The master station reads 10 bit elements of 01 2C (decimal 300). Slave station response: 01 81 02 C1 91 The response of the slave station is illegal address, because protocol address 300 has no definition of bit element. 5. XMT from master station: 01 04 00 02 00 0A D1 CD The mater station sends the frame of function code 04. Slave station response: 01 84 01 82 C0 The response of the slave station is illegal function code. 6. XMT from master station: 01 02 00 00 00 0A F8 0D Master station reads input element (X element), 10 (X0-X9) from the starting address 00 00. Slave station response: 01 02 02 00 00 B9 B8 The slave station responds with correct information, which has 02 bytes, and the content is 00 00. 7. XMT from master station: 01 01 04 B0 00 0A BC DA Master station reads 10 bit elements(X0-X9) starting with 04 B0 (decimal 1200). Slave station response: 01 01 02 00 00 B9 FC Note 1. The slave station responds with 02 bytes, and the content is 00 00. 2. X element does not support write.

Processing of double-word elements

1. The current value of C element is word element or double word element. The values from C200 to C255 are double word elements, which are read and written through the function codes (03, 16) of read/write register. The address of every two registers corresponds to one C double word element, and the registers can only be read or written in pair. For example, read the RTU fame of three C double word elements (C200-C202):

In the returned data, 9700 and 9701 are the two addresses representing the content of C200. 9700 is the high 16 bits and 9701 is the low 16 bits.

2. When reading the double word element, if the starting address for the reading is not an even number, the error code of illegal address will be returned. For example:

XMT from master station: 01 03 25 E5 00 04 5E F2

The starting address for the reading sent by the master is 25 E5 (four word elements, decimal 9701).

Slave station response: 01 83 02 C0 F1

Slave station response: illegal data address

3. If the number of the read elements is not an even number, the error code of illegal data will be returned. For example:

XMT from master station: 01 03 25 E4 00 05 CE F2

25 E4: The starting address for master station reading, 5 word elements

Slave response: 01 83 03 01 31

Slave station returns illegal data.

Processing of LONG INT data:

Based on the storage method of PLC in GCM, one LONG INT data can be saved in two D elements. For example: Store one LONG INT data in D3 and D4, D3 is used for storing high 16 bits, D4 is used for storing low 16 bits in Invt PLC. If master station reads LONG INT data through Modbus, the 32-bit data shall be regrouped based on the LONG INT storage principle of INVT PLC after reading the data.

Storage principle of FLOAT is the same as the storage principle of LONG INT.

5. Description Of Broadcast

The slave station supports broadcast but not all the function codes. The slave station supports function codes 01, 02, 03, 05, 06, 08, 15 and 16 (decimal). Wherein, 01, 02 and 03 can read element but do not support broadcast, no response will be gotten after sending out the broadcast; 05, 06, 15 and 16 can write element and support broadcast, no response will be gotten after sending out the broadcast, but slave station will process the received data; 08 is the diagnostic function code, it does not support the broadcast except its sub-function codes 0x01, 0x04 and 0x0A (Hexadecimal).

ASCIL	HEX				High	3-bit			
Acon	HEX	0	1	2	3	4	5	6	7
	0	NUL	DLE	SPACE	0	@	Р	` (pause mark)	р
	1	SOH	DC1	!	1	A	Q	а	q
	2	STX	DC2	"	2	В	R	b	r
	3	ETX	DC3	#	3	С	S	С	S
	4	EOT	DC4	\$	4	D	Т	d	t
	5	ENQ	NAK	%	5	E	U	е	u
	6	ACK	SYN	&	6	F	V	f	V
	7	BEL	ETB	, (single quotation marks)	7	G	W	g	w
Low 4-bit	8	BS	CAN	(8	Н	Х	h	Х
	9	HT	EM)	9	I	Y	i	у
	A	LF	SUB	*	:	J	Z	j	Z
	В	VT	ESC	+	;	K	[k	{
	С	FF	FS	, (comma)	<	L		I	l (vertical slash)
	D	CR	GS	- (subtraction sign)	=	М]	m	}
	E	SO	RS		>	N	٨	n	~
	F	SI	US	1	?	0	- (Underline)	0	DEL

Appendix 8 ASCII Code Table

li	nstruction	Instruction function	Program steps	Influenced flag bit	IVC2	IVC1	Page
	ABS	Read current value instruction	8			V	199
	ADD	Integer math instructions	7	Zero, Carry, Borrow	\checkmark	\checkmark	89
	ANB	Power-flow block and	1				58
	AND	NO contact power-flow and	1				56
	AND<	Compare integer AND< instruction	5				185
	AND<=	Compare integer AND<= instruction	5				185
	AND<>	Compare integer AND <> instruction	5				185
	AND=	Compare integer AND= instruction	5				185
	AND>	Compare integer AND > instruction	5				185
	AND>=	Compare integer AND > =instruction	5				185
	ANDD<	Compare double integer ANDD< instruction	7				188
	ANDD<=	Compare double integer ANDD<= instruction	7				188
А	ANDD<>	Compare double integer ANDD<> instruction	7				188
	ANDD=	Compare double integer ANDD= instruction	7				188
	ANDD>	Compare double integer ANDD> instruction	7				188
	ANDD>=	Compare double integer ANDD>= instruction	7				188
	ANDR<	Compare floating point number ANDR< instruction	7				191
	ANDR<=	Compare floating point number ANDR<= instruction	7				191
	ANDR<>	Compare floating point number ANDR<> instruction	7				191
	ANDR=	Compare floating point number ANDR= instruction	7				191
	ANDR>	Compare floating point number ANDR> instruction	7				191
	ANDR>=	Compare floating point number ANDR>= instruction	7				191
	ANI	NC contact power-flow and	1				56
	ASC	ASCII Code conversion instruction	19			V	113
	ATI	ASCII-hexadecimal integer conversion instruction	7			V	115
	BAND	Word bit contactor AND instruction	5			V	181
	BANI	Word bit contactor ANI instruction	5		V	V	181
	BCD	Word to 16-bit BCD instruction	5				109
	BIN	16-bit BCD to word instruction	5				110
	BITS	Counting ON bit in word instruction	5				179
	BLD	Word bit contactor LD instruction	5				180
В	BLDI	Word bit contactor LDI instruction	5				180
	BMOV	Move data block transmission instruction	7				81
	BOR	Word bit contactor OR instruction	5				182
	BORI	Word bit contactor ORI instruction	5				182
	BOUT	Word bit coil output instruction	5				183
	BRST	Word bit coil reset instruction	5				183
	BSET	Word bit coil set instruction	5			V	183
			Dependent on				
	CALL	Calling a subprogram	the parameter		al	2	70
	CALL		of the		N	N	79
			subprogram				
	CCITT	CCITT check instruction	7				174
	CFEND	Conditional end from user main program	1				77
С	CIRET	Conditional return from user interrupt subprogram	1			\checkmark	78
	CJ	Conditional jump	3				77
	COS	Floating point number COS instruction	7	Zero		\checkmark	103
	CRC16	CRC16 check instruction	7				175
	CSRET	Conditional return from user subprogram	1				79
	CTR	16-bit counter loop cycle counting instruction	5				68
	CTU	16-bit counter counting up instruction	5			\checkmark	67

Appendix 9 Instruction Index

I	nstruction	Instruction function	Program steps	Influenced flag bit	IVC2	IVC1	Page
	DADD	Add double integer instruction	10	Zero, Carry, Borrow	\checkmark	\checkmark	93
	DBCD	Double word to 32-bit BCD instruction	7				109
	DBIN	32-bit BCD to double word instruction	7				110
	DBITS	Counting ON bit in double word instruction	6				179
	DCMP<	Compare date< instruction	7				140
	DCMP<=	Compare date<= instruction	7				140
	DCMP<>	Compare date<> instruction	7				140
	DCMP=	Compare date= instruction	7				140
	DCMP>	Compare date> instruction	7				140
	DCMP>=	Compare date>= instruction	7				140
	DCNT	32-bit counting instruction	7				69
	DDEC	Decrement double integer instruction	4		V		96
	DDIV	Divide double integer instruction	10		V		95
	DEC	Decrement integer instruction	3				92
	DECO	Decode instruction	5				178
	DFLT	Double integer to floating point number instruction	7				107
	DFMOV	Fill data block double word instruction	9		V		82
		Read double word from special module buffer			,	1	
	DFROM	register instruction	10		V	V	130
	DGBIN	32-bit gray code to double word instruction	7				112
	DGRY	Double word to 32-bit gray code instruction	7		V	V	111
	-	High-speed counting compare interrupt trigger					-
	DHSCI	instruction	10		V	V	144
	DHSCR	High-speed counting compare reset instruction	10				145
	DHSCS	High-speed counting compare set instruction	10		V	V	143
	2.1000	High-speed counting table compare pulse output				,	
	DHSP	instruction	10		\checkmark		149
	DHST	High-speed counting table compare instruction	10		V	V	147
П	DHSZ	High-speed counting zone compare instruction	13		√	v V	146
U	DI	Disable interrupt instruction	1		1	ب ا	78
		Increment double integer instruction	1		2	N	96
	DINO			Zoro Carry	•	•	50
	DINT	Floating point number to double integer instruction	7	Borrow	V	V	108
	DIV	Divide integer instruction	7		V	V	90
	DMOV	Move double word data transmission instruction	7		V	V	80
	DMUL	Multiply double integer instruction	10		V	٧	94
	DNEG	Negative double integer instruction	7			٧	97
	DRCL	32-bit carry circular shift left instruction	9	Carry	V	٧	124
	DRCR	32-bit carry circular shift right instruction	9	Carry		V	123
	DROL	32-bit circular shift left instruction	9	Carry		V	123
	DROR	32-bit circular shift right instruction	9	Carry	\checkmark		122
	DRVA	Control absolute position instruction	11				199
	DRVI	Control relative position instruction	11			\checkmark	198
	DSHL	32-bit shift left instruction	9		\checkmark		126
	DSHR	32-bit shift right instruction	9		\checkmark		125
	DSQT	Square root double integer instruction	7		\checkmark		95
	DSUB	Subtract double integer instruction	10	Zero, Carry, Borrow	\checkmark	\checkmark	94
	DSUM	Sum double integer instruction	9	Zero	\checkmark		99
	DTI	Double integer to integer instruction	6		\checkmark		106
	DTO	Read double word from special module buffer register instruction	10		\checkmark	\checkmark	132
	D\/ARS	Double integer absolute value instruction	7				97
		AND double word instruction	10		1	1	117
		NOT double word Instruction	10		2	2	110
			10		N N	N	119
		Exclusive-OR double word instruction	10		N 2	N	110
		Exchange double word instruction	7		N	N N	011
	DYCH		1		N	N	04

l	nstruction	Instruction function	Program steps	Influenced flag bit	IVC2	IVC1	Page
_	ED	Power flow falling edge detection	1		1		61
	EI	Enable interrupt instruction	1				78
	ENCO	Encode instruction	5		V	V	178
	EROMWR	EEPROM write instruction	7			V	134
	FU	Power flow rising edge detection	2			v V	60
		EREQUENCY CONVERTER touch forward rotation			,	,	
	IVDFWD	instruction	6			V	166
		FREQUENCY CONVERTER touch reverse rotation				,	
	IVDREV	instruction	6			V	167
		FREQUENCY CONVERTER set frequency					
_	IVFRQ	instruction	8			N	168
E		FREQUENCY CONVERTER forward rotation				1	
	IVEWD	instruction	6			N	165
		FREQUENCY CONVERTER read single register	10			1	
	IVRD	value instruction	10			N	1/1
	IVRDST	FREQUENCY CONVERTER read status instruction	10			V	170
		FREQUENCY CONVERTER reverse rotation				.1	400
	IVREV	instruction	6			N	166
	IVSTOP	FREQUENCY CONVERTER stop instruction	8			V	167
		FREQUENCY CONVERTER write single register	10			ما	160
	IVVVRI	value instruction	10			N	109
	EXP	Floating point number EXP instruction EXP	7	Zero, Carry			105
	FIFO	First-in-first-out instruction	7	Zero	\checkmark	V	86
	FLT	Integer to floating point number instruction	6		\checkmark	V	107
F	FMOV	Fill data block instruction	7		\checkmark	V	82
	FOR	Cycle instruction	3		\checkmark	V	75
	FROM	Read word from special module buffer register	0		N	1	120
	TROW	instruction	5		v	v	123
G	GBIN	16-bit gray code to word instruction	5		\checkmark	\checkmark	110
0	GRY	Word to 16-bit gray code instruction	5				111
	HACKLE	Hackle wave signal output instruction	12		\checkmark		161
Н	HCNT	High-speed counter drive instruction	7			\checkmark	142
	HOUR	Timing list instruction	8			\checkmark	139
	INC	Increment integer instruction	3		\checkmark		91
	INT	Floating point number to integer instruction	6	Zero, Carry,	\checkmark		108
1		······································		Borrow			
	INV	Power-flow block inverse	1		V	V	61
	ITA	hexadecimal integer-ASCII conversion instruction	7			V	114
	ITD	Integer to double integer instruction	6		٧	N	107
	LBL	Jump label definition	3		V	V	76
	LD	NO contact power-flow loading	1		V	V	55
	LD<	Compare integer LD< instruction	5		V	٦	184
	LD<=	Compare integer LD<= instruction	5		V	V	184
	LD<>	Compare integer LD<> instruction	5		V	V	184
	LD=	Compare integer LD= instruction	5		V	V	184
	LD>	Compare integer LD> instruction	5		V	V	184
	LD>=	Compare integer LD>= instruction	5		V	V	184
	LDD<	Compare double integer LDD< instruction	7		V	V	187
	LDD<=	Compare double integer LDD<= instruction	7		V	\checkmark	187
-	LDD<>	Compare double integer LDD<> instruction	7		V	V	187
	LDD=	Compare double integer LDD= instruction	7		V	٦	187
	LDD>	Compare double integer LDD> instruction	7		V	٧	187
	LDD>=	Compare double integer LDD>= instruction	7		V	٧	187
	LDI	NC contact power-flow loading	1		N	N	55
	LDR<	Compare floating point number LDR< instruction	7		N	V	190
	LDR<=	Compare floating point number LDR<= instruction	7		N	N	190
	LDR<>	Compare floating point number LDR<> instruction	7		N	N	190
	LDR=	Compare floating point number LDR= instruction	7		N	N	190
	LDR>	Compare floating point number LDR> instruction	7		N	N	190

li li	nstruction	Instruction function	Program steps	Influenced flag bit	IVC2	IVC1	Page
	LDR>=	Compare floating point number LDR>= instruction	7				190
	LIFO	Last-in-first-output instruction	7	Zero			86
	LN	Floating point number LN instruction	7	Zero, Carry			105
	LRC	LRC check instruction	7				176
	MC	Main control	3				62
	MCR	Main control remove	1				63
	Modbus	Modbus master station communication instruction	8				164
	MOV	Move word data transmission instruction	5		V	V	80
М	MPP	Output power-flow stack pop off	1		V	V	60
	MPS	Output power-flow input stack	1		1	1	59
	MPD	Poad output power flow stack top value	1		2	1	60
		Multiply integer instruction	0		N	N	00
	NEC	Negative integer instruction	0		N	N	90
м	NEG	Deture frem evelo	5		N	N	93
IN	NOD		1		N	N	75
	NUP	NO operation	1		N	N	62
	UR	NO contact power-tiow or	1		N	N	57
	OR<	Compare integer OR< instruction	5		N	N	186
	OR<=	Compare integer OR<= instruction	5		N	N	186
	OR<>	Compare integer OR<> instruction	5		N	N	186
	OR=	Compare integer OR= instruction	5		N	V	186
	OR>	Compare integer OR> instruction	5		V	V	186
	OR>=	Compare integer OR>= instruction	5		V	V	186
	ORB	Power-flow block or	1			V	59
	ORD<	Compare double integer ORD< instruction	7			V	189
	ORD<=	Compare double integer ORD<= instruction	7		\checkmark		189
	ORD<>	Compare double integer ORD<> instruction	7				189
0	ORD=	Compare double integer ORD= instruction	7		\checkmark	\checkmark	189
	ORD>	Compare double integer ORD> instruction	7				189
	ORD>=	Compare double integer ORD>= instruction	7			\checkmark	189
	ORI	NC contact power-flow or	1		\checkmark		57
	ORR<	Compare floating point number ORR< instruction	7				192
	ORR<=	Compare floating point number ORR<= instruction	7				192
	ORR<>	Compare floating point number ORR<> instruction	7				192
	ORR=	Compare floating point number ORR= instruction	7				192
	ORR>	Compare floating point number ORR> instruction	7				192
	ORR>=	Compare floating point number ORR>= instruction	7		V		192
	OUT	Power-flow output	1				58
	OUT Sxx	SFC state jumb	3			V	64
	PID	PID instruction	9				157
	PLS	Pulse Output Instruction of Envelop	7				155
		Count pulse with acceleration/deceleration output			1		
	PLSR	instruction	10		N	N	153
Р	PLSV	Variable speed pulse output instruction	8				197
	PLSY	Count pulse output instruction	9		V		152
	POWER	Floating point number exponentiation instruction	10	Zero, Carry	V	V	104
	PUSH	Push instruction	7	Carry	V	V	84
	PWM	PWM pulse output instruction	7		V	V	156
	RADD	Add floating point number instruction	10	Zero Carry	V	1	99
	RAMP	Ramp wave signal output instruction	12	_0.0, 00119	V	, v	160
		16-bit carry circular shift left instruction	7	Carny	1	1	122
	RCP	16-bit carry circular shift right instruction	7	Carry	2	1	124
		Free-port receiving (PCV) instruction	7	Carry	N 2	1	170
Р		Divide fleeting point number instruction	10	Zoro Corni	N N	2	101
R		Set input filtering constant instruction	10 E	ZEIU, Cally	N	N	101
		Set input filtering constant instruction	5		N	N	100
			ی ۱		N	N	133
	REI	SFC program enu	1		N	Ŷ	00
	RMOV		7		\checkmark	\checkmark	81
1	1	manuclion		1		1	1

RNUL Multip floating point number instruction 10 Zero, Carry V V 100 RQL 16-bit circular shift left instruction 7 Carry V V 100 RQR 16-bit circular shift left instruction 7 Carry V V 110 RQR 16-bit circular shift left instruction 7 Carry V V 100 RST Rest Sec Sec V V 06 RSTS Sec Sec V V 00 V V 100 RSUB Subtract floating point number instruction 9 V V 102 SEG Hod to 7-segment encode 5 V V 102 SET Set Set ats shift 3 V V 102 SET Set Set ats shift instruction 9 V V 122 SHT Shift instruction 7 Zero V 124 SET	lı lı	nstruction	Instruction function	Program steps	Influenced flag bit	IVC2	IVC1	Page
RNEG Negative floating point number instruction 7 Carry V 102 ROR 16-bit circar shift right instruction 7 Carry V 101 RSIT Square root floating point number instruction 7 Zero V 101 RSI Square root floating point number instruction 7 Zero V V 102 RSIM Subtract floating point number instruction 10 Zero, Carry V V 106 RSUM Sum floating point number instruction 9 -V V 102 RVABS Subtract floating point number instruction 7 -V V 102 SEC Word to 7-segment encode 5 -V V 103 SFT Shift eff typic instruction 7 -V V 128 SFT Shift eff typic instruction 7 -V V 124 SFT Shift eff typic instruction 7 Zero V V 128 SFT Subtract hift e		RMUL	Multiply floating point number instruction	10	Zero, Carry	V		100
ROL 16-bit circular shift left instruction 7 Carry V 120 RR Rot if bott circular shift right instruction 7 Carry V 101 RST Rest 1 V V 101 RST Rest 1 V V 162 RSUS Subtract floating point number instruction 10 Zero, Carry V V 102 RSUS Subtract floating point number instruction 9 V V 102 SET Set Set Verd to 7-segment encode 5 V V 102 SET Set Set Set of instruction 9 V V 122 SHR 16-bit shift flot instruction 7 Zero, Carry, V V 123 SIN Floating point number instruction 7 Zero, Carry, V V 124 SHR 16-bit shift flot instruction 7 Zero, Carry, V V 124 SUS Subarot on theore instruction		RNEG	Negative floating point number instruction	7				102
ROR 16-bit circular shift right instruction 7 Carry V V 119 RST Square root floating point number instruction 7 Zero V V 162 RST Sxx SFC state delete 3 V V 106 RSUM Subtract floating point number instruction 9 V V 106 RVABS Subtract floating point number instruction 9 V V 102 RVABS Floating point number stateute value instruction 7 V V 102 SEC Word to 7-segment encode 5 V V 122 SFIT Shift floating point number statuction 9 V V 122 SFIT Shift floating point number Statuction 7 Zero V V 123 SFIT Shift float bit floating point number Statuction 7 Zero V V 125 SHI 18-bit shift float word instruction 7 Zero V V 124		ROL	16-bit circular shift left instruction	7	Carry			120
RSOT Square noti floating point number instruction 7 Zero √ √ 60 RST Sox SFC state delete 1 - √ √ 62 RSUB Subtract floating point number instruction 10 Zero, Carry √ √ 66 RSUB Subtract floating point number instruction 9 √ √ 100 RSUB Subtract floating point number instruction 7 √ √ 100 SET Swith floating point number instruction 9 √ √ 128 SET Sox SFC state shift 3 - √ √ 128 SHR 16-bit shift floating point number shift struction 7 - √ √ 128 SHR 16-bit shift floating point number shift struction 7 Zero √ √ 128 SHR 16-bit shift floating point number shift struction 7 Zero √ √ 128 SHR 16-bit shift floating point number instruction 7 Zero<		ROR	16-bit circular shift right instruction	7	Carry			119
R Fits Reset 1 V<		RSQT	Square root floating point number instruction	7	Zero			101
R RST 5xx SPC state delete 3 √ √ √ 0 RSUB Subtract floating point number instruction 9 √ √ √ 100 RSUB Subtract floating point number instruction 9 √ √ √ 100 RSUB Subtract floating point number instruction 7 √ √ √ 102 SET Soft State shift 3 √ √ 64 SFTR Shift left byle instruction 9 √ √ 128 SHT Tobit shift left instruction 7 √ √ 128 SHT Tobit shift left instruction 7 √ √ 128 SUB Subtract integer instruction 7 Zero. Carry. √ √ 80 SUB Subtract integer instruction 7 Zero. Carry. √ √ 83 TADD Add dock instruction 7 Zero. Carry. √ √ 83 TADD	R	RST	Reset	1				62
RSUB Subtract floating point number instruction 10 Zero, Carry √ √ √ 100 RSUM Sum floating point number absolute value instruction 9 √		RST Sxx	SFC state delete	3				65
RSUM Sum floating point number absolute value instruction 9 √ √ 102 SEG Word to 7-segment encode 5 √ √ 102 SET Set 1 √ √ 4 113 SET Set 1 √ √ 4 4 113 SET Set SFC state shift 3 √ √ 4 4 127 SHL 16-bit shift left instruction 7 √ √ 125 SHR 16-bit shift left instruction 7 Zero √ √ 103 SDP Pulse detection instruction 7 Zero √ √ 4 78 SUB Subtract integer instruction 8 Zero √ √ 4 78 SUB SUB Subtract integer instruction 7 Zero √ √ 4 104 TOD Add lock instruction 7 Zero, Carry √ √ <t< td=""><td>RSUB</td><td>Subtract floating point number instruction</td><td>10</td><td>Zero, Carry</td><td></td><td></td><td>100</td></t<>		RSUB	Subtract floating point number instruction	10	Zero, Carry			100
RVABS Floating point number absolute value instruction 7 V V 113 SEG Word to 7-segment encode 5 V V 113 SET Sx SFC Satt 1 V V 62 SET Sx SFC state shift 3 V V 62 SFTR Shift fit byte instruction 9 V V 128 SFTR Shift fit byte instruction 7 V V 124 SFR 16-bit shift fight word instruction 7 V V 124 SPD Pulse detection instruction 7 V V 103 SPD Pulse detection instruction 3 V V 64 STD SFC state load instruction 7 Zero, Carry, V V 89 SWAP Swap bytes 3 V V 104 137 TADD Add clock instruction 7 Zero, Carry V V 141		RSUM	Sum floating point number instruction	9				106
SEG Word to 7-segment encode 5 V V 11 SET Set Set Set Set 62 SET Sxx SFC state shift 3 V V 64 SFTL Shift figh type instruction 9 V V 127 SHL 16-bit shift figh word instruction 7 V V 128 S IFIC 16-bit shift fight word instruction 7 Zero V V 103 SPD Pulse detection instruction 7 Zero V V 103 SOID Square root indeger instruction 3 V V 464 SUB Subtract integer instruction 3 Zero V V 483 SUB Subtract integer instruction 7 Zero V V 483 TADD Add clock instruction 7 Zero, Carry V V 141 TCMP<2		RVABS	Floating point number absolute value instruction	7				102
SET Set 1 V V 64 SET SFC state shift 3 V V 64 SFTR Shift left byte instruction 9 V V 128 SFTR Shift left byte instruction 7 V V 125 SHR 16-bit shift left instruction 7 V V 126 SHR 16-bit shift left instruction 7 Zero V V 126 SND Pulse detection instruction 7 Zero V V 126 SUB Subtract integer instruction 3 V V 64 STOP User program stop 1 Zero, Carry, V V 98 SUM Subtract integer instruction 7 Zero, Carry, V V 137 TAN Floating point number TAN instruction 7 Zero, Carry, V V 141 TCMP Compare time> instruction 7 V V 141 TCMP		SEG	Word to 7-segment encode	5		V		113
SET Sax SFC state shift 3 V		SET	Set	1		V		62
SFTL Shift right byte instruction 9 √ √ √ 128 SFTR Shift right byte instruction 7 √ √ 127 SHR 16-bit shift right word instruction 7 √ √ 124 S SNR Floating point number SN instruction 7 Zero √ √ 124 S SND Pulse detection instruction 7 Zero √ √ 191 SUD Supare root integer instruction 3 √ √ 489 SUB Subtract integer instruction 7 Zero, Carry, v √ √ 89 SUM Sum integer instruction 7 Zero, Carry, v √ 4137 TADD Add clock instruction 7 Zero, Carry, v √ 4141 TCMP Compare time= instruction 7 Zero, Carry, v √ 4141 TCMP Compare time>-instruction 7 √ √ 4141 TCMP Compare time>-ins		SET Sxx	SFC state shift	3				64
SFTR Shift right byte instruction 9 √ √ 127 SHL 16-bit shift left instruction 7 √ √ √ 125 SH 16-bit shift left instruction 7 √ √ 125 SN Floating point number SIN instruction 7 Zero √ √ 163 SDD Pulse detection instructions 5 √ √ 151 STD Subaract integer instruction 3 √ √ 64 STOP User program stop 1 √ √ 78 SUB Subtract integer instruction 8 Zero √ √ 89 SWAP Swap bytes 3 - √ √ 83 TADD Ad clock instruction 7 Zero, Carry √ √ 141 TCMP Compare time>- instruction 7 - √ √ 141 TCMP Compare time>- instruction 7 √ √		SFTL	Shift left byte instruction	9		V	\checkmark	128
SHL 16-bit shift refit instruction 7 i i i i i S SHR 16-bit shift right word instruction 7 Zero i		SFTR	Shift right byte instruction	9				127
SHR 16-bit shift right word instruction 7 V V 124 SIN Floating point number SIN instruction 7 Zero V V 103 SPD Pulse detection instruction 7 Zero V V 1051 SGT Square root integer instruction 3 V V 64 STD User program stop 1 V V 64 SUB Subtract integer instruction 8 Zero, Carry, V V 489 SWAP Swap bytes 3 V V 89 SWAP Swap bytes 3 V V 89 TADD Add lock instruction 7 Zero, Carry V 104 TCMP<		SHL	16-bit shift left instruction	7				125
S SIN Floating point number SIN instruction 7 Zero 4 4 103 SPD Pulse detection instruction 7		SHR	16-bit shift right word instruction	7				124
SPD Pulse detection instruction 7 V V V 161 SQT Square root integer instruction 3 V V 91 STL SFC state load instruction 3 V V 64 STOP User program stop 1 Zero, Carry, N V V 68 SUM Sum integer instruction 8 Zero, Carry, V V 483 SUM For Swap bytes 3 V V 88 SWAP Swap bytes 3 V V 88 TADD Add clock instruction 7 Zero, Carry V V 88 TADP Compare time> instruction 7 Zero, Carry V V 104 TCMP>Compare time> instruction 7 Zero, Carry V V 141 TCMP>Compare time> instruction 7 V V 141 TCMP>Compare time> instruction 7 V V 141 TCMP> Compare time> instruction	S	SIN	Floating point number SIN instruction	7	Zero			103
SOT Square root integer instructions 5 v v v 9 91 STL SFC state load instruction 3 v <td>0</td> <td>SPD</td> <td>Pulse detection instruction</td> <td>7</td> <td></td> <td>V</td> <td></td> <td>151</td>	0	SPD	Pulse detection instruction	7		V		151
STL STC state load instruction 3 √ √ √ √ √ 78 StOP User program stop 1 √ 141 TCMP Compare time <instruction< td=""> 7 √ √ √ √ √ √ 141 TCMP> Compare time<instruction< td=""> 7 √ √ √ 141 TCMP> Compare time><instruction< td=""> 7 √ √ √ 141 TCMP></instruction<></instruction<></instruction<>		SQT	Square root integer instructions	5		V		91
STOP User program stop 1 √ √ 78 SUB Subtract integer instruction 7 Zero, Carry, Borrow √ √ 89 SUM Sum integer instruction 8 Zero, Carry, W √ √ 88 SWAP Swap bytes 3 - √ √ 83 TADD Add clock instruction 7 Zero, Carry √ √ 83 TAN Floating point number TAN instruction 7 Zero, Carry √ √ 104 TCMP<		STL	SFC state load instruction	3		V	V	64
SUB Subtract integer instruction 7 Zero, Carry, Borrow √ √ 99 SUM Sum integer instruction 8 Zero √ √ 98 SWAP Swap bytes 3 √ √ √ 98 SWAP Swap bytes 3 √ √ √ 483 TADD Add clock instruction 7 Zero, Carry √ √ 104 TCMP<		STOP	User program stop	1		\checkmark	\checkmark	78
Solution Region Instruction 1 Borrow 1 0		SUB	Subtract integer instruction	7	Zero, Carry,			89
SUM Sum integer instruction 8 Zero √ √ 98 SWAP Swap bytes 3 √ √ √ 83 TADD Add clock instruction 7 Zero, Carry √ √ 137 TAN Floating point number TAN instruction 7 Zero, Carry √ √ 141 TCMP <c< td=""> Compare times instruction 7 √ √ 141 TCMP Compare times instruction 5 √ √ 66 TON Monostable timing instruction 5 √ √ 66 TON On-delay temmber timing instruction 3 √ √ 135</c<>		000		,	Borrow	'		00
SWAP Swap bytes 3 √ √ ×83 TADD Add clock instruction 7 Zero, Carry √ √ 137 TADD Floating point number TAN instruction 7 Zero, Carry √ √ 104 TCMP Compare times instruction 7 Zero, Carry √ √ 141 TCMP Compare times instruction 7 √ √ 141 TCMP> Compare times instruction 5 √ √ 141 TMNN Monostable timing instruction 5 √ √ 141 TMNP> Compare times instruction 5 √ √ 65 TO Read word from special module buffer register 9 √ √ 135 <td></td> <td>SUM</td> <td>Sum integer instruction</td> <td>8</td> <td>Zero</td> <td>V</td> <td>\checkmark</td> <td>98</td>		SUM	Sum integer instruction	8	Zero	V	\checkmark	98
TADD Add clock instruction 7 Zero, Carry √ √ 137 TAN Floating point number TAN instruction 7 Zero, Carry √ √ 104 TCMP<		SWAP	Swap bytes	3		V	V	83
TAN Floating point number TAN instruction 7 Zero, Carry √ √ 104 TCMP Compare time instruction 7 √ √ 141 TCMP Compare time> instruction 7 √ √ 141 TCMP Compare time> instruction 7 √ √ 141 TCMP> Compare time> instruction 7 √ √ 141 TCMP> Compare time> instruction 7 √ √ 141 TCMP> Compare time> instruction 7 √ √ 141 TMON Monostable timing instruction 7 √ √ 141 TMON Monostable timing instruction 5 √ √ 67 TO Read word from special module buffer register 9 √ √ 131 TOR Read real-time clock instruction 5 √ √ 66 TON On-delay timing instruction 12 √ √ 132 TRIAN		TADD	Add clock instruction	7	Zero, Carry	V	V	137
TCMP Compare time <instruction< th=""> 7 √ √ 141 TCMP Compare time<instruction< td=""> 7 √ √ 141 TCMP<</instruction<></instruction<>		TAN	Floating point number TAN instruction	7	Zero, Carry	V	V	104
TCMP<= Compare time> instruction 7 √ √ 141 TCMP<> Compare time> instruction 7 √ √ 141 TCMP<		TCMP<	Compare time< instruction	7		V	V	141
TCMP<> Compare time> instruction 7 √ √ 141 TCMP= Compare time> instruction 7 √ √ 141 TCMP> Compare time> instruction 7 √ √ 141 TCMP> Compare time> instruction 7 √ √ 141 TCMP> Compare time> instruction 7 √ √ 141 TMON Monostable timing instruction 5 √ √ 67 TO Read word from special module buffer register 9 √ √ 131 TOF Off-delay timing instruction 5 √ √ 66 TON On-delay timing instruction 5 √ √ 132 TRAR Read real-time clock instruction 3 √ √ 132 TRIANGLE Triangle wave signal output instruction 7 Zero, Borrow √ √ V VABS Integer absolute value instruction 5 √ √ 132 V <td>TCMP<=</td> <td>Compare time>= instruction</td> <td>7</td> <td></td> <td>V</td> <td>V</td> <td>141</td>		TCMP<=	Compare time>= instruction	7		V	V	141
TCMP= Compare time= instruction 7 √ √ 141 TCMP> Compare time> instruction 5 √ √ 67 TO Read word from special module buffer register instruction 9 √ √ 131 TOF Off-delay timing instruction 5 √ √ 66 TON On-delay remember timing instruction 5 √ √ 142 TRIANGLE Triangle wave signal output instruction 12 √ √ 162 TSUB Subtract clock instruction 7 Zero, Borrow √ √ 138 TWR Write real-time clock instruction 5 √ √ 132 V VABS Integer absolute value instruction 7 √ √		TCMP<>	Compare time<> instruction	7		V	V	141
TCMP> Compare time>instruction 7 √ √ 141 TCMP>= Compare time>= instruction 7 √ √ 141 TMON Monostable timing instruction 5 √ √ 141 TMON Monostable timing instruction 5 √ √ 141 TO Read word from special module buffer register instruction 9 √ √ 131 TOF Off-delay timing instruction 5 √ √ 66 TON On-delay remember timing instruction 5 √ √ 66 TRIANGLE Triangle wave signal output instruction 3 √ √ 132 TWR Write real-time clock instruction 7 Zero, Borrow √ 142 TWR Write real-time clock instruction 7 Zero, Borrow √ 138 TWR Write real-time clock instruction 7 Zero, Borrow √ 138 V VABS Integer absolute value instruction 7 √		TCMP=	Compare time= instruction	7		V	V	141
TCMP>= Compare time>= instruction 7 V V 141 TMON Monostable timing instruction 5 V V 67 TO Read word from special module buffer register instruction 9 V V 131 TOF Off-delay timing instruction 5 V V 66 TON On-delay timing instruction 5 V V 66 TON On-delay timing instruction 5 V V 66 TON On-delay temember timing instruction 5 V V 66 TRD Read real-time clock instruction 3 V V 132 TRIANGLE Triangle wave signal output instruction 12 V V 162 TSUB Subtract clock instruction 7 Zero, Borrow V 138 TWR Write real-time clock instruction 5 V V 132 VARD Read analog potentiometer value instruction 5 V V 132		TCMP>	Compare time> instruction	7		V	V	141
TMON Monostable timing instruction 5 V V 67 TO Read word from special module buffer register instruction 9 V V 131 TOF Off-delay timing instruction 5 V V 66 TON On-delay timing instruction 5 V V 66 TON On-delay timing instruction 5 V V 66 TRD Read real-time clock instruction 3 V V 135 TRIANGLE Triangle wave signal output instruction 12 V V 162 TSUB Subtract clock instruction 7 Zero, Borrow V 138 TWR Write real-time clock instruction 7 Zero, Borrow V 138 V VRRD Read analog potentiometer value instruction 5 V V 92 VRRD Read analog potentiometer value instruction 7 V V 115 WDT User program watchdog reset 1 V		TCMP>=	Compare time>= instruction	7		V	V	141
TORead word from special module buffer register instruction9131TOFOff-delay timing instruction566TONOn-delay timing instruction565TOROn-delay remember timing instruction566TRDRead real-time clock instruction3135TRIANGLETriangle wave signal output instruction12162TSUBSubtract clock instruction7Zero, Borrow138TWRWrite real-time clock instruction3136VVABSInteger absolute value instruction5132VVRRDRead analog potentiometer value instruction5132WANDAND word instruction7115WDTUser program watchdog reset1117WWOROR word instruction788WSFRShift right word instruction983XMTFree-port sending (XMT) instruction7116ZRSTBatch bit reset instruction5196ZRSTBatch bit reset instruction5196 <td>т</td> <td>TMON</td> <td>Monostable timing instruction</td> <td>5</td> <td></td> <td>V</td> <td>V</td> <td>67</td>	т	TMON	Monostable timing instruction	5		V	V	67
TOFOff-delay timing instruction5√√66TONOn-delay timing instruction5√√66TONROn-delay remember timing instruction5√√66TRDRead real-time clock instruction3√√135TRIANGLETriangle wave signal output instruction12√√162TSUBSubtract clock instruction7Zero, Borrow√√138TWRWrite real-time clock instruction3√√138TWRWrite real-time clock instruction3√√138TWRWrite real-time clock instruction5√√92VVABSInteger absolute value instruction5√√132WANDAND word instruction7√√115WDTUser program watchdog reset1√√117WWOROR word instruction7√√116WSFLShift left word instruction9√√88WSFRShift right word instruction7√√116XXCHExclusive-OR word instruction7√√116XXCHExclusive-OR word instruction7√√116ZZRNRegress to origin instruction7√√116ZZRSTBatch bit reset instruction5√√117		то	Read word from special module buffer register	9		\checkmark	\checkmark	131
IOF Off-delay timing instruction 5 V V 66 TON On-delay timing instruction 5 V V 66 TONR On-delay remember timing instruction 5 V V 66 TRN Read real-time clock instruction 3 V V 66 TRD Read real-time clock instruction 3 V V 135 TRIANGLE Triangle wave signal output instruction 12 V V 162 TSUB Subtract clock instruction 7 Zero, Borrow V V 138 TWR Write real-time clock instruction 3 V V 138 VABS Integer absolute value instruction 5 V V 132 VRRD Read analog potentiometer value instruction 7 V V 132 WAND AND word instruction 7 V V 115 WDT User program watchdog reset 1 V V 116 <td></td> <td>TOF</td> <td></td> <td></td> <td></td> <td></td> <td>,</td> <td></td>		TOF					,	
ION On-delay timing instruction 5 V V 65 TONR On-delay remember timing instruction 5 V V 66 TRD Read real-time clock instruction 3 V V 135 TRLANGLE Triangle wave signal output instruction 12 V V 162 TSUB Subtract clock instruction 7 Zero, Borrow V 138 TWR Write real-time clock instruction 3 V V 138 V VABS Integer absolute value instruction 5 V V 132 V VABS Integer absolute value instruction 5 V V 132 WAND AND word instruction 7 V V 132 WAND AND word instruction 7 V V 115 WDT User program watchdog reset 1 V V 117 WOR OR word instruction 7 V V 116 <t< td=""><td></td><td>TOF</td><td></td><td>5</td><td></td><td>N</td><td>N</td><td>66</td></t<>		TOF		5		N	N	66
IONROn-delay remember timing instruction5NV66TRDRead real-time clock instruction3VV135TRIANGLETriangle wave signal output instruction12VV162TSUBSubtract clock instruction7Zero, BorrowVV138TWRWrite real-time clock instruction3VV136VVABSInteger absolute value instruction5VV92VRDRead analog potentiometer value instruction5VV132WANDAND word instruction7VV115WDTUser program watchdog reset1VV117WOROR word instruction7VV88WSFRShift left word instruction9VV88WXORExclusive-OR word instruction7VV116XXCHExchange word instruction7VV116ZRNRegress to origin instruction5VV172ZRSTBatch bit reset instruction5VV177			On-delay timing instruction	5		N	N	65
IRDRead rearrance clock instruction3NN135TRIANGLETriangle wave signal output instruction12NN162TSUBSubtract clock instruction7Zero, BorrowNN138TWRWrite real-time clock instruction3NN136VVABSInteger absolute value instruction5NN92VRRDRead analog potentiometer value instruction5NN132WANDAND word instruction7VN115WDTUser program watchdog reset1NN117WWOROR word instruction5VN116WSFLShift left word instruction9VN88WSFRShift right word instruction7VN87WXORExclusive-OR word instruction7VN116XXCHExchange word instruction5VN116XZRNRegress to origin instruction7VN116ZZRSTBatch bit reset instruction5VV177			On-delay remember timing instruction	5		N	N	00
IncludeIntegre wave signal output instruction12VVTSUBSubtract clock instruction7Zero, Borrow√√138TWRWrite real-time clock instruction3√√136VVABSInteger absolute value instruction5√√92VRDDRead analog potentiometer value instruction5√√132WANDAND word instruction7√√115WDTUser program watchdog reset1√√77WINVNOT word instruction5√√1117WWOROR word instruction7√√88WSFLShift left word instruction9√√87WXORExclusive-OR word instruction7√√116XXCHExchange word instruction5√√83XMTFree-port sending (XMT) instruction7√√172ZRNRegress to origin instruction5√√196ZZRSTBatch bit reset instruction5√√177			Triangle wave signal output instruction	3 12		N	N	100
$\begin{array}{ c c c c c c c c } \hline 1306 & Subtract clock instruction & 7 & 2 erb, Borrow & V & V & 138 \\ \hline TWR & Write real-time clock instruction & 3 & V & V & 136 \\ \hline V & VABS & Integer absolute value instruction & 5 & V & V & 92 \\ \hline VRRD & Read analog potentiometer value instruction & 5 & V & V & 132 \\ \hline WAND & AND word instruction & 7 & V & V & 115 \\ \hline WDT & User program watchdog reset & 1 & V & V & 77 \\ \hline WINV & NOT word instruction & 5 & V & V & 117 \\ \hline WWR & OR word instruction & 7 & V & V & 116 \\ \hline WSFL & Shift left word instruction & 9 & V & V & 88 \\ \hline WSFR & Shift right word instruction & 9 & V & V & 88 \\ \hline WXOR & Exclusive-OR word instruction & 7 & V & V & 116 \\ \hline X & XCH & Exchange word instruction & 7 & V & V & 116 \\ \hline Z & ZRST & Batch bit reset instruction & 5 & V & V & 177 \\ \hline \end{array}$		TRIANGLE		7	Zoro Porrow	N	N	102
VWrite real-time clock instruction3 $\sqrt{100}$ VVABSInteger absolute value instruction5 $\sqrt{100}$ VRRDRead analog potentiometer value instruction5 $\sqrt{100}$ WANDAND word instruction7 $\sqrt{100}$ WDTUser program watchdog reset1 $\sqrt{100}$ WINVNOT word instruction5 $\sqrt{100}$ WOROR word instruction7 $\sqrt{100}$ WSFLShift left word instruction9 $\sqrt{100}$ WSFRShift right word instruction9 $\sqrt{100}$ WXORExclusive-OR word instruction7 $\sqrt{100}$ XXCHExclusive-OR word instruction7 $\sqrt{100}$ XZRNRegress to origin instruction7 $\sqrt{100}$ ZZRSTBatch bit reset instruction5 $\sqrt{100}$				1	Zelo, Bollow	N	N	130
VVADSInteger absolute value instruction3VV32VRRDRead analog potentiometer value instruction5 $$ $$ 132WANDAND word instruction7 $$ $$ 115WDTUser program watchdog reset1 $$ $$ 77WINVNOT word instruction5 $$ $$ 117WWOROR word instruction7 $$ $$ 116WSFLShift left word instruction9 $$ $$ 88WSFRShift right word instruction9 $$ $$ 87WXORExclusive-OR word instruction7 $$ $$ 116XXCHExchange word instruction5 $$ $$ 83XMTFree-port sending (XMT) instruction7 $$ $$ 172ZRNRegress to origin instruction5 $$ $$ 196ZZRSTBatch bit reset instruction5 $$ $$ 177				5		1	1	130
WANDAND word instruction3 $\sqrt{132}$ WANDAND word instruction7 $\sqrt{115}$ WDTUser program watchdog reset1 $\sqrt{117}$ WINVNOT word instruction5 $\sqrt{117}$ WOROR word instruction7 $\sqrt{116}$ WSFLShift left word instruction9 $\sqrt{116}$ WSFRShift left word instruction9 $\sqrt{116}$ WXORExclusive-OR word instruction7 $\sqrt{116}$ XXCHExclusive-OR word instruction7 $\sqrt{116}$ XXCHExchange word instruction5 $\sqrt{1172}$ ZRNRegress to origin instruction11 $\sqrt{196}$ ZRSTBatch bit reset instruction5 $\sqrt{177}$	V	VADO	Poad appleg potentiometer value instruction	5		1	1	92
WARDAnd word instruction7 $\sqrt{113}$ WDTUser program watchdog reset1 $\sqrt{113}$ WINVNOT word instruction5 $\sqrt{117}$ WINVNOT word instruction7 $\sqrt{117}$ WOROR word instruction7 $\sqrt{116}$ WSFLShift left word instruction9 $\sqrt{116}$ WSFRShift right word instruction9 $\sqrt{116}$ WXORExclusive-OR word instruction7 $\sqrt{116}$ XXCHExclusive-OR word instruction7 $\sqrt{116}$ XXCHExchange word instruction5 $\sqrt{112}$ ZRNRegress to origin instruction11 $\sqrt{196}$ ZRSTBatch bit reset instruction5 $\sqrt{177}$			AND word instruction	7		1	1	132
WD1User program watchool reset1 $\sqrt{17}$ WINVNOT word instruction5 $\sqrt{117}$ WWOROR word instruction7 $\sqrt{116}$ WSFLShift left word instruction9 $\sqrt{116}$ WSFRShift right word instruction9 $\sqrt{116}$ WXORExclusive-OR word instruction7 $\sqrt{116}$ XXCHExclusive-OR word instruction7 $\sqrt{116}$ XXCHExchange word instruction5 $\sqrt{172}$ ZRNRegress to origin instruction11 $\sqrt{196}$ ZRSTBatch bit reset instruction5 $\sqrt{177}$			Liser program watchdog reset	1		1	1	77
WWorkNormal instruction3 $\sqrt{111}$ WWOROR word instruction7 $\sqrt{116}$ WSFLShift left word instruction9 $\sqrt{116}$ WSFRShift right word instruction9 $\sqrt{116}$ WXORExclusive-OR word instruction7 $\sqrt{116}$ XXCHExclusive-OR word instruction7 $\sqrt{116}$ XXCHExchange word instruction5 $\sqrt{112}$ ZRNRegress to origin instruction11 $\sqrt{196}$ ZZRSTBatch bit reset instruction5 $\sqrt{177}$		WINV	NOT word instruction	5		1	1	117
WeakOrtword instruction9 $$ $$ $$ WSFLShift left word instruction9 $$ $$ 88WSFRShift right word instruction9 $$ $$ 87WXORExclusive-OR word instruction7 $$ $$ 116XXCHExchange word instruction5 $$ $$ 83XMTFree-port sending (XMT) instruction7 $$ $$ 172ZRNRegress to origin instruction11 $$ 196ZZRSTBatch bit reset instruction5 $$ $$	w	WOR		7		1	1	116
WorldOrmanicationOVVWSFRShift right word instruction9 $$ $$ 87WXORExclusive-OR word instruction7 $$ $$ 116XXCHExchange word instruction5 $$ $$ 83XMTFree-port sending (XMT) instruction7 $$ $$ 172ZRNRegress to origin instruction11 $$ 196ZZRSTBatch bit reset instruction5 $$ $$	**	WSEL	Shift left word instruction	9		1	1	88
WXORExclusive-OR word instruction 7 $$ $$ XXCHExchange word instruction 5 $$ $$ XXCHExchange word instruction 5 $$ $$ XXMTFree-port sending (XMT) instruction 7 $$ $$ ZRNRegress to origin instruction 11 $$ $$ ZZRSTBatch bit reset instruction 5 $$ $$		WSFR	Shift right word instruction	9		1	1	87
XXCHExchange word instruction7 $\sqrt{10}$ XXMTFree-port sending (XMT) instruction7 $\sqrt{12}$ ZRNRegress to origin instruction11 $\sqrt{196}$ ZZRSTBatch bit reset instruction5 $\sqrt{177}$		WXOR		7		1	1	116
XXMTFree-port sending (XMT) instruction7 $$ $$ ZRNRegress to origin instruction11 $$ 196ZZRSTBatch bit reset instruction5 $$ $$		XCH	Exchange word instruction	5		1	1	83
ZRNRegress to origin instruction11 $\sqrt{196}$ ZZRSTBatch bit reset instruction5 $\sqrt{177}$	Х	XMT	Free-port sending (XMT) instruction	7		1	v V	172
ZZRSTBatch bit reset instruction5 $$ 100	\vdash	ZRN	Regress to origin instruction	11		,	v V	196
	z	ZRST	Batch bit reset instruction	5			v v	177
ZSET Set batch bit instruction 5 $\sqrt{\sqrt{1}}$ 177		ZSET	Set batch bit instruction	5		V	V	177

Appendix 10 Classified Instruction Index

	Instruction	Instruction function	Program steps	Influenced flag bit	IVC2	IVC1	Page
	LD	NO contact power-flow loading	1				55
	LDI	NC contact power-flow loading	1				55
	AND	NO contact power-flow and	1				56
	ANI	NC contact power-flow and	1				56
	OR	NO contact power-flow or	1				57
	ORI	NC contact power-flow or	1				57
	OUT	Power-flow output	1				58
	SET	Set	1				62
	RST	Reset	1				62
	ANB	Power-flow block and	1		\checkmark	\checkmark	58
	ORB	Power-flow block or	1		\checkmark	\checkmark	59
	INV	Power-flow block inverse	1		\checkmark	\checkmark	61
	NOP	No operation	1				62
Basic	MPS	Output power-flow input stack	1				59
instruction	MRD	Read output power-flow stack top value	1				60
	MPP	Output power-flow stack pop off	1				60
	MC	Main control	3				62
	MCR	Main control remove	1				63
	EU	Power flow rising edge detection	2				60
	ED	Power flow falling edge detection	2				61
	TON	On-delay timing instruction	5				65
	TOF	Off-delay timing instruction	5				66
	TMON	Monostable timing instruction	5				67
	TONR	On-delay remember timing instruction	5			\checkmark	66
	CTU	16-bit counter counting up instruction	5			\checkmark	67
	CTR	16-bit counter loop cycle counting	5		\checkmark	\checkmark	68
	DCNT	32-bit counting instruction	7		V	V	69
	LBL	Jump label definition	3		V	V	76
	CJ	Conditional jump	3		V	V	77
		Calling a subprogram	Dependent				
	CALL		on the		\checkmark	\checkmark	79
		5 1 5	program				
	CSRET	Conditional return from user subprogram	1				79
Program	CFEND	Conditional end from user main program	1				77
control		Conditional return from user interrupt	4		.1	.1	70
instruction	CIRET	subprogram	1		N	N	78
	FOR	Cycle instruction	3				75
	NEXT	Return from cycle	1				75
	WDT	User program watchdog reset	1				78
	STOP	User program stop	1				78
	EI	Enable interrupt instruction	1		\checkmark	\checkmark	78
	DI	Disable interrupt instruction	1				78
	STL	SFC state load instruction	3		\checkmark	\checkmark	64
050	SET Sxx	SFC state shift	3		\checkmark	\checkmark	64
SFC	OUT Sxx	SFC state jump	3		\checkmark	\checkmark	64
Instruction	RST Sxx	SFC state reset	3		\checkmark	\checkmark	65
	RET	SFC program end	1			\checkmark	65

	Instruction	Instruction function	Program steps	Influenced flag bit	IVC2	IVC1	Page
	MOV	Move word data transmission instruction	5		\checkmark	\checkmark	80
Data	DMOV	Move double word data transmission instruction	7		\checkmark	V	80
transmission instruction	RMOV	Move floating point number data transmission instruction	7		\checkmark	V	81
	BMOV	Move data block transmission instruction	7				81
	SWAP	Swap bytes	3		\checkmark		83
	XCH	Exchange word instruction	5		\checkmark		83
	DXCH	Exchange double word instruction	7		\checkmark	\checkmark	84
	FMOV	Fill data block instruction	7				82
Data flow	DFMOV	Fill data block double word instruction	9				82
instruction	WSFR	Shift right word instruction	9				87
monuolion	WSFL	Shift left word instruction	9		\checkmark		88
	PUSH	Push instruction	7	Carry	\checkmark		84
	FIFO	First-in-first-out instruction	7	Zero			86
	LIFO	Last-in-first-output instruction	7	Zero			86
	ADD	Add integer instructions	7	Zero, Carry, Borrow	\checkmark	\checkmark	89
	DADD	Add double integer instruction	10	Zero, Carry, Borrow	\checkmark	\checkmark	93
	SUB	Subtract integer instruction	7	Zero, Carry, Borrow	\checkmark	\checkmark	89
	DSUB	Subtract double integer instruction	10	Zero, Carry, Borrow	\checkmark	\checkmark	94
	INC	Increment integer instruction	3		\checkmark		91
	DINC	Increment double integer instruction	4		\checkmark		96
Integer /	DEC	Decrement integer instruction	3		\checkmark		92
double	DDEC	Decrement double integer instruction	4		\checkmark		96
integer math	MUL	Multiply integer instruction	8		\checkmark	\checkmark	90
instruction	DMUL	Multiply double integer instruction	10		\checkmark	\checkmark	94
	DIV	Divide integer instruction	7		√	V	90
	DDIV	Divide double integer instruction	10		V	V	95
	VABS	Integer absolute value instruction	5		V	V	92
	DVABS	Double integer absolute value instruction	7		V	V	97
	NEG	Negative integer instruction	5		V	V	93
	DNEG	Negative double integer instruction	7		V	V	97
	SQT	Square root integer instructions	5		V	V	91
	DSQT	Square root double integer instruction	7		V	N	95
	SUM	Sum integer instruction	8	Zero	V	N	98
	DSUM	Sum double integer instruction	9	Zero	N	N	99
	RADD	Add floating point number instruction	10	Zero, Carry	N	N	99
	RSUB	Subtract floating point number instruction	10	Zero, Carry	N	N	100
	RMUL	Nultiply floating point number instruction	10	Zero, Carry	N	N	100
	RDIV	Divide floating point number instruction	10	Zero, Carry	N	N	101
	RVABS	instruction	7		\checkmark	\checkmark	102
Floating point	RNEG	Floating point number absolute value instruction	7		\checkmark	\checkmark	102
number math	RSQT	Square root floating point number instruction	7	Zero	\checkmark	V	101
	SIN	Floating point number SIN instruction	7	Zero	V	V	103
	COS	Floating point number COS instruction	7	Zero	V	V	103
	TAN	Floating point number TAN instruction	7	Zero, Carry	V	V	104
	LN	Floating point number LN instruction	7	Zero, Carry	\checkmark	\checkmark	105
	EXP	Floating point number EXP instruction	7	Zero, Carry	\checkmark	\checkmark	105
	POWER	Floating point number exponentiation instruction	10	Zero, Carry	\checkmark	V	104
	RSUM	Sum floating point number instruction	9				106

	Instruction	Instruction function	Program steps	Influenced flag bit	IVC2	IVC1	Page
	WAND	AND word instruction	7		V		115
	DWAND	AND double word instruction	10				117
Mand (day bla	WOR	OR word instruction	7				116
Word/double word loaic	DWOR	OR double word instruction	10				118
instruction	WXOR	Exclusive-OR word instruction	7		\checkmark	\checkmark	116
Instruction	DWXOR	Exclusive-OR double word instruction	10		\checkmark	\checkmark	118
	WINV	NOT word instruction	5		\checkmark	\checkmark	117
	DWINV	NOT double word Instruction	7		\checkmark	\checkmark	119
	ROR	16-bit circular shift right instruction	7	Carry	\checkmark	\checkmark	119
	DROR	32-bit circular shift right instruction	9	Carry	\checkmark	\checkmark	122
	ROL	16-bit circular shift left instruction	7	Carry			120
	DROL	32-bit circular shift left instruction	9	Carry			123
	RCR	16-bit carry circular shift right instruction	7	Carry			121
	DRCR	32-bit carry circular shift right instruction	9	Carry	\checkmark	\checkmark	123
Shift / rotate	RCL	16-bit carry circular shift left instruction	7	Carry			122
instruction	DRCL	32-bit carry circular shift left instruction	9	Carry	\checkmark	\checkmark	124
	SHR	16-bit shift right word instruction	7		\checkmark	\checkmark	124
	DSHR	32-bit shift right instruction	9				125
	SHL	16-bit shift left instruction	7				125
	DSHL	32-bit shift left instruction	9				126
	SFTL	Shift left byte instruction	9		\checkmark	\checkmark	128
	SFTR	Shift right byte instruction	9		\checkmark	\checkmark	127
	DECO	Decode instruction	5				178
	ENCO	Encode instruction	5			\checkmark	178
Enhanced bit	BITS	Counting ON bit in word instruction	5		\checkmark	\checkmark	179
logic instruction	DBITS	Counting ON bit in double word	6		\checkmark	\checkmark	179
	ZRST	Batch bit reset instruction	5		V	V	177
	ZSET	Set batch bit instruction	5		۰ ۷	v v	177
	HCNT	High-speed counter drive instruction	7		V	V	142
	DHSCS	High-speed counting compare set instruction	10		\checkmark	\checkmark	143
	DHSCR	High-speed counting compare reset instruction	10		\checkmark	\checkmark	145
	DHSCI	High-speed counting compare interrupt trigger instruction	10		\checkmark	\checkmark	144
	DHSZ	High-speed counting zone compare instruction	13		\checkmark	\checkmark	146
High speed I/O instruction	DHST	High-speed counting table compare instruction	10		\checkmark	\checkmark	147
	DHSP	High-speed counting table compare pulse output instruction	10		\checkmark	\checkmark	149
	SPD	Pulse detection instruction	7		\checkmark	\checkmark	151
	PLSY	Count pulse output instruction	9		\checkmark	\checkmark	152
	PLSR	Count pulse with acceleration/deceleration output instruction	10		\checkmark	\checkmark	153
	PWM	PWM pulse output instruction	7			\checkmark	156
	PLS	Pulse Output Instruction of Envelop	7			\checkmark	155
	PID	PID instruction	9			\checkmark	157
Control	RAMP	Ramp wave signal output instruction	12				160
calculation	TRIANGLE	Triangle wave signal output instruction	12			\checkmark	162
Instruction	HACKLE	Hackle wave signal output instruction	12			\checkmark	161

	Instruction	Instruction function	Program steps	Influenced flag bit	IVC2	IVC1	Page
	FROM	Read word from special module buffer register instruction	9		\checkmark	V	129
	DFROM	Read double word from special module buffer register instruction	10		\checkmark	\checkmark	130
External	то	Write word to special module buffer register instruction	9		\checkmark	V	131
equipment instruction	DTO	Write double word to special module buffer register instruction	10		\checkmark	V	132
	VRRD	Read analog potentiometer value instruction	5		\checkmark	\checkmark	132
	REFF	Set input filtering constant instruction	3				133
	REF	Instant refresh I/O instruction	5		\checkmark		133
	EROMWR	Write EEPROM instruction	7				134
	ABS	Read current value instruction	8			\checkmark	199
Leasting	ZRN	Regress to origin instruction	11				196
Locating	PLSV	Variable speed pulse output instruction	8				197
Instruction	DRVI	Control relative position instruction	11				198
	DRVA	Control absolute position instruction	11				199
	TRD	Read real-time clock instruction	3		\checkmark	\checkmark	135
Real-time	TWR	Write real-time clock instruction	3		\checkmark	\checkmark	136
clock	TADD	Add clock instruction	7	Zero, Carry			137
instruction	TSUB	Subtract clock instruction	7	Zero, Borrow	\checkmark		138
	HOUR	Timing list instruction	8		\checkmark		139
	LD=	Compare integer LD= instruction	5		V	V	184
	LDD=	Compare double integer LDD= instruction	7		V	V	187
	LDR=	Compare floating point number LDR= instruction	7		\checkmark	\checkmark	190
	LD>	Compare interger LD> instruction	5		\checkmark		184
	LDD>	Compare double integer LDD> instruction	7				187
	LDR>	Compare floating point number LDR> instruction	7		\checkmark	\checkmark	190
	LD>=	Compare integer LD>= instruction	5		\checkmark		184
	LDD>=	Compare double integer LDD>= instruction	7		\checkmark	\checkmark	187
	LDR>=	Compare floating point number LDR>= instruction	7		\checkmark	\checkmark	190
	LD<	Compare integer LD< instruction	5		\checkmark		184
	LDD<	Compare double integer LDD< instruction	7		\checkmark	\checkmark	187
Compare contactor	LDR<	Compare floating point number LDR< instruction	7		\checkmark	\checkmark	190
instruction	LD<=	Compare integer LD<= instruction	5		\checkmark	\checkmark	184
	LDD<=	Compare double integer LDD<= instruction	7		\checkmark	\checkmark	187
	LDR<=	Compare floating point number LDR<= instruction	7		\checkmark	V	190
	LD<>	Compare integer LD<> instruction	5		\checkmark		184
	LDD<>	Compare double integer LDD<> instruction	7		\checkmark	\checkmark	187
	LDR<>	Compare floating point number LDR<> instruction	7		\checkmark	\checkmark	190
	AND=	Compare integer AND= instruction	5		\checkmark	\checkmark	185
	ANDD=	Compare double integer ANDD= instruction	7		\checkmark	\checkmark	188
	ANDR=	Compare floating point number ANDR= instruction	7		\checkmark	V	191
	AND>	Compare integer AND> instruction	5			\checkmark	185

	Instruction	Instruction function	Program steps	Influenced flag bit	IVC2	IVC1	Page
	ANDD>	Compare double integer ANDD> instruction	7		\checkmark	\checkmark	188
	ANDR>	Compare floating point number ANDR> instruction	7		\checkmark	\checkmark	191
	AND>=	Compare integer AND>= instruction	5		\checkmark	\checkmark	185
	ANDD>=	Compare double integer ANDD>= instruction	7		\checkmark	\checkmark	188
	ANDR>=	Compare floating point number ANDR>= instruction	7		\checkmark	\checkmark	191
	AND<	Compare integer AND< instruction	5				185
	ANDD<	Compare double integer ANDD< instruction	7		\checkmark	\checkmark	188
	ANDR<	Compare floating point number ANDR< instruction	7		\checkmark	\checkmark	191
	AND<=	Compare integer AND<= instruction	5		\checkmark	\checkmark	185
Compare	ANDD<=	Compare double integer ANDD<= instruction	7		\checkmark	\checkmark	188
instruction	ANDR<=	Compare floating point number ANDR<= instruction	7		\checkmark	\checkmark	191
	AND<>	Compare integer AND<> instruction	5		\checkmark	\checkmark	185
	ANDD<>	Compare double integer ANDD<> instruction	7		\checkmark	\checkmark	188
	ANDR<>	Compare floating point number ANDR<> instruction	7		\checkmark	\checkmark	191
	OR=	Compare integer OR= instruction	5			V	186
	ORD=	Compare double integer ORD= instruction	7		\checkmark	\checkmark	189
	ORR=	Compare floating point number ORR= instruction	7		\checkmark	\checkmark	192
	OR>	Compare integer OR> instruction	5		\checkmark	\checkmark	186
	ORD>	Compare double integer ORD> instruction	7		\checkmark	\checkmark	189
	ORR>	Compare floating point number ORR> instruction	7		\checkmark	\checkmark	192
	OR>=	Compare integer OR>= instruction	5			V	186
	ORD>=	Compare double integer ORD>= instruction	7		\checkmark	\checkmark	189
	ORR>=	Compare floating point number ORR>= instruction	7		\checkmark	\checkmark	192
	OR<	Compare integer OR< instruction	5			V	186
	ORD<	Compare double integer ORD< instruction	7		\checkmark	\checkmark	189
Compare	ORR<	Compare floating point number ORR< instruction	7		\checkmark	\checkmark	192
contactor	OR<=	Compare integer OR<= instruction	5		\checkmark		186
Instaction	ORD<=	Compare double integer ORD<= instruction	7		\checkmark	\checkmark	189
	ORR<=	Compare floating point number ORR<= instruction	7		\checkmark	\checkmark	192
	OR<>	Compare integer OR<> instruction	5		V	\checkmark	186
	ORD<>	Compare double integer ORD<> instruction	7		\checkmark	\checkmark	189
	ORR<>	Compare floating point number ORR<> instruction	7		\checkmark	\checkmark	192

	Instruction	Instruction function	Program steps	Influenced flag bit	IVC2	IVC1	Page
	ITD	Integer to double integer instruction	6				107
	DTI	Double integer to integer instruction	6		\checkmark		106
	FLT	Integer to floating point number instruction	6		\checkmark	\checkmark	107
	DFLT	Double integer to floating point number instruction	7		\checkmark	\checkmark	107
	INT	Floating point number to integer instruction	6	Zero, Carry, Borrow	\checkmark	V	108
	DINT	Floating point number to double integer instruction	7	Zero, Carry, Borrow	\checkmark	\checkmark	108
	BCD	Word to 16-bit BCD instruction	5			\checkmark	109
5.	DBCD	Double word to 32-bit BCD instruction	7			\checkmark	109
Data	BIN	16-bit BCD to word instruction	5				110
converting	DBIN	32-bit BCD to double word instruction	7				110
instruction	GRY	Word to 16-bit gray code instruction	5		V		111
	DGRY	Double word to 32-bit gray code instruction	7		\checkmark	\checkmark	111
	GBIN	16-bit gray code to word instruction	5		\checkmark	\checkmark	112
	DGBIN	32-bit gray code to double word instruction	7		\checkmark	\checkmark	112
	SEGI	Word to 7-segment encode	5				113
	ASC	ASCII Code conversion instruction	19				113
	ITA	hexadecimal integer-ASCII conversion	7			\checkmark	114
	ATI	ASCII-hexadecimal integer conversion	7			\checkmark	115
	BLD	Word bit contactor LD instruction	5		2	2	180
	BLDI	Word bit contactor LD instruction	5		1	1	180
	BAND	Word bit contactor AND instruction	5		1	1	181
Word	BANI	Word bit contactor ANL instruction	5		1	1	101
contactor		Word bit contactor AR instruction	5		1	1	101
instruction	BOR	Word bit contactor OR instruction	5		1	1	102
instruction	BSET	Word bit coll set instruction	5		1	1	183
	BRST	Word bit coil reset instruction	5		1	1	183
	BOUT	Word bit coil output instruction	5		1	1	103
	Modbus	Modbus master station communication	8		v √	v √	164
	XMT	Free-port sending (XMT) instruction	7		N	N	172
	RCV	Free-port receiving (RCV) instruction	7		1	1	172
	1.01	ERECHENCY CONVERTER forward	1		•	,	170
	IVFWD	rotation instruction	6			\checkmark	165
	IVREV	FREQUENCY CONVERTER reverse	6			\checkmark	166
	IVDFWD	FREQUENCY CONVERTER touch	6			\checkmark	166
Communicati	IVDREV	FREQUENCY CONVERTER touch	6			\checkmark	167
on instruction	IVSTOP	FREQUENCY CONVERTER stop	8			\checkmark	167
	IVFRQ	FREQUENCY CONVERTER set	8			\checkmark	168
	IVWRT	FREQUENCY CONVERTER write single	10			√	169
		register value instruction FREQUENCY CONVERTER read status	10			~	170
			10			v	170
	IVRD	register value instruction	10			\checkmark	171

	Instruction	Instruction function	Program steps	Influenced flag bit	IVC2	IVC1	Page
Data chock	CCITT	CCITT check instruction	7		\checkmark	\checkmark	174
instruction	CRC16	CRC16 check instruction	7		V	\checkmark	175
Instruction	LRC	LRC check instruction	7		V	\checkmark	176
	DCMP=	Compare date= instruction	7		V	\checkmark	140
Compara	DCMP>	Compare date> instruction	7			\checkmark	140
data	DCMP<	Compare date< instruction	7			\checkmark	140
instruction	DCMP>=	Compare date>= instruction	7			\checkmark	140
mstruction	DCMP<=	Compare date<= instruction	7			\checkmark	140
	DCMP<>	Compare date<> instruction	7			\checkmark	140
	TCMP=	Compare time= instruction	7			\checkmark	141
Compara	TCMP>	Compare time> instruction	7			\checkmark	141
timo	TCMP<	Compare time< instruction	7			\checkmark	141
instruction	TCMP>=	Compare time>= instruction	7			\checkmark	141
monuclion	TCMP<=	Compare time<= instruction	7		V	\checkmark	141
	TCMP<>	Compare time<> instruction	7			\checkmark	141